小学数学小论文(汇总5篇)

个人学习 10 0

小学数学小论文 第1篇

“空间与图形”是小学数学教学中的重要内容之一,在以后的学习中体现得更为明显。数形结合带给教学以蓬勃之生命,赋予教学以持续性的活力,使有效教学的策略更丰富,更清晰。

1、以童真唤起兴趣,营造乐学的有效教学情境

著名教育家皮亚杰说过:“儿童是具有主动性的人,所教的东西要能引起儿童的兴趣,符合他们的需要,才能有效地促使他的发展。”在我们的童年的记忆中,好的动画片和童话书总会给人一种最美好的的印象,那种感觉挥之不去,抹之不灭。新课改教材里各种鲜艳逼真的情境图,各种平移、旋转、对称的美丽图案,可以让学生真切地体会到了数学的美,受到美的熏陶。因此,在教学《分数的初步认识》时,与学生互相问好后,笔者设计了“分数乐园”这个孩子特别喜欢的卡通画面,可是“智慧大门”却关闭着。生动形象的动画谜语,一下子就吸引了孩子们的目光。成功地激发学生的挑战精神和战胜困难的斗志。学生猜对后,引出生活中分东西的经验,自然而然地导出课题“认识几分之一”。笔者利用信息技术资源,创设了一个生动有趣的故事情境,引出孩子们特别熟悉和喜欢的———“分数乐园里智勇闯三关”的游戏,使学生们的自主参与意识自然而然的产生,主动探索,学习新知。

2、看图说话,鼓励多提问;先学后导,作图更有效

陶行知先生说过:“创造始于问题”。学生没将题目读懂时,他是没有问题的,这与他没读题效果一样。只有钻研之后,才会生出“看似绝壁,却辟小径”之感。在《分数的初步认识》学习过程中,要引导学生自主发现问题,提出问题,分析问题,解决问题。因此,在新授部分,笔者利用多媒体展开教学,分三次展示课件“分数乐园”,从易到难,由浅入深地逐层深入地让学生观看直观的感性材料,启发学生自己发现数学信息,提出问题,自主学习与合作探究相结合地学习新知。课件出示:两个小朋友,和一些食物(包括:两瓶水,四个苹果和一块月饼。)让学生根据生活经验分苹果和水后,引导只有一块月饼,要分给两个小朋友,该怎么办呢?随之“半块”的答案就悄然产生,紧接着让学生说说自己是怎么想的,那么把一个月饼平均分成2份,一份就是半块?”那半块是怎么样的呢?经过动态展示比较平均分与不平均分的“一半”月饼,让学生形象充分地理解平均分,在突出平均分的基础上,介绍二分之一的意义,从而自然引出1/2的写法和读法。

3、数形结合,不忘操作

根据新课程标准的要求,笔者在本课中设计了“折一折”这个游戏环节。让学生通过自己动手操作折纸,来突破难点,完成“把一个整体平均分成几份,一份就是它的`几分之一”的转化过程。学生兴致勃勃地在“折一折”中玩起了折纸游戏,使他们在玩中发现问题,开动脑筋想办法解决问题。同时,笔者还设置了“快乐猜猜猜”的小游戏,让孩子们在玩中体验数学知识,运用数学知识。

强化认识,完整叙述

由平均分实物导出,图形也可以平均分成2份,其中一份就是它的1/2。要求学生利用自己喜欢的图形(包括长方形、正方形和圆)折出它的1/2。引导学生动手操作,在小组合作中解决疑难。通过进行比较交流,说一说:你拿的是什么图形?如何得到它的二分之一?哪部分是它的二分之一。使学生能够完整叙述1/2的含义,提高表达能力。这个过程不但培养了学生的自主学习的能力,激发了学生主动参与的意识,还让他们明白数学无处不在,源于我们的生活。最后,在共同交流,检查所学习的新知识,达到锻炼学生语言表达能力的目的。

动手操作,促进内化

紧接着,顺势引导:你能继续折出这个图形的1/4吗?引发学生继续探索新知的欲望,逐层深入的诱导新知。交流汇报意义后,课件引出长方形的4种不同的折法,引导学生思考:为什么涂色部分都可以用1/4来表示呢?让学生体会到:虽然纸的形状不同、折法不同,但把这张纸都“平均分”成了4份,所以每一份就表示这张纸的四分之一。这个过程由浅入深地逐层深入,学生自主探索,欲望强烈,解决了疑难问题,使他们充分地体验到了成功。

顺势引路,巧妙迁移

认识了二分之一和四分之一,你还想认识几分之一呢?让孩子们乘胜追击,继续研究各种几分之一。顺势教师要求:你能试着折一折,涂一涂表示出你想认识的几分之一吗?拿出学具袋中的材料,每人选择一样试一试。经过折涂,学生之间的交流介绍,让学生展示并解说成果。通过变换板书的数字,引导学生讨论:你发现了什么?师提示:把一个图形平均分成3份,每一份是它的三分之一,那平均分成5份、6份、100份呢?学生总结出:把一个整体平均分成几份,一份就是它的几分之一。锻炼他们语言能力的同时,培养了学生们的逻辑思维能力。

4、“形→数”、“数→形”,分阶段把握数形结合知识难度,制定相应的教学策略

低段学生及图形建构差的的学生适宜“形→数”的直观思维,其教学大多以观察、操作等活动开始,在感知和积累了大量空间图形的具体形象及抽象化图形后,自然过渡到复杂、抽象的图形学习。高段的学生适宜“数→形”、“数→数”的抽象思维,因其数形知识有了一定积累后,几何直观图形感知能力,逻辑思维能力已有一定程度的发展。他们在观察、分析、思考题目后,对于简单的图,不一定每次都要画出来。数量关系式、图形能用“脑图”表现出来再好不过,“脑图”才是我们最美好的追求。我们要做的,就是将数与形的知识结合起来,降低学生的认知难度,使问题迎刃而解。对于学习有困难的学生,应视其情况,降低层次,回溯到相应的基础上再予以教学。

小学数学小论文 第2篇

19世纪数学家.西尔维斯特指出:“置身于数学领域中不断地探索和追求,能把人类的思维活动升华到纯净而和谐的境界。” 当代数理逻辑学家王浩先生也说,数学具有纯净的美。J.阿巴思诺特说:“数学知识使思维增加活力,使之摆脱偏见,轻信和迷信的束缚。” . 塞劳尔说:“正如文学诱导人们的情感一样,数学则启发人们的想像与推理。”

总之,数学能令你的思维纯净,和谐, 会为你的思维增添活力。 它赋予你想象的翅膀, 为你开通推理的渠道。数学是被我们运用在实际生活中的,它教我们去识别一些东西,教我们如何才能取得利益。有时候数学还能帮我们认清欺骗,甚至创造欺骗。

有不少的同学也许试过电脑算命,可能还曾信以为真。“电脑算命”看起来挺玄乎,只要你报出自己出生的年、月、日和性别,一按按键,屏幕上就会出现所谓性格、命运的句子,据说这就是你的“命”。

其实这充其量不过是一种电脑游戏而已。我们用数学上的抽屉原理很容易说明它的荒谬。

抽屉原理又称鸽笼原理或狄利克雷原理,它是数学中证明存在性的一种特殊方法。举个最简单的例子,把3个苹果按任意的方式放入两个抽屉中,那么一定有一个抽屉里放有两个或两个以上的苹果,运用同样的推理可以得到:

原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。

如果以70年计算,按出生的年、月、日、性别的不同组合数应为70×365×2=51100,我们把它作为“抽屉”数。我国现有人口11亿,我们把它作为“物体”数。由于× =21526×51100+21400,根据原理2,存在21526个以上的人,尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的“命”,这真是荒谬绝伦!

在我国古代,早就有人懂得用抽屉原理来揭露生辰八字之谬。如清代陈其元在《庸闲斋笔记》中就写道:“余最不信星命推步之说,以为一时(注:指一个时辰,合两小时)生一人,一日生十二人,以岁计之则有四千三百二十人,以一甲子(注:指六十年)计之,止有二十五万九千二百人而已,今只以一大郡计,其户口之数已不下数十万人(如咸丰十年杭州府一城八十万人),则举天下之大,自王公大人以至小民,何啻亿万万人,则生时同者必不少矣。其间王公大人始生之时,必有庶民同时而生者,又何贵贱贫富之不同也?”在这里,一年按360日计算,一日又分为十二个时辰,得到的抽屉数为60×360×12=259200。

所谓“电脑算命”不过是把人为编好的算命语句象中药柜那样事先分别一一存放在各自的柜子里,谁要算命,即根据出生的年月、日、性别的不同的组合按不同的编码机械地到电脑的各个“柜子”里取出所谓命运的句子。这种在古代迷信的亡灵上罩上现代科学光环的勾当,是对科学的亵渎。

商业中的欺骗也是离不开数学的.。阿凡提就为我们做最好的说明。

古尔邦节快到,天山南北充满节日气氛。集镇上,车水马龙,热闹异常。店铺里、道路旁、地摊上,到处都摆满货物,琳琅满目,应有尽有。水果商们把贮藏保鲜的苹果、葡萄、雪梨、石油、哈密瓜一并搬出来,希望卖个好价钱。

这天晌午,阿凡提忙完半天的活计,也骑着毛驴赶集来。阿凡提以聪明能干、正直仗义闻名遐尔,谁个不认识?一路上,他不住地和熟人、朋友打着招呼。忽然,听见有人高喊他的名字,阿凡提回头一看,原来水果店老板艾山。此人奸诈贪婪,不仅常用假冒伪劣商品坑害顾客,还专门放剥削百姓,是个人人痛恨的坏蛋。阿凡提早就想教训教训这家伙,可就是没有遇上机会。这时艾山正拿着秤杆坐在两大筐葡萄跟前发愣。一筐是紫葡萄,标价为2元1斤;一筐是青葡萄,标价为1元2斤。只是问的人多,买的人少。

“阿凡提大哥,如今做点生意真不容易呀。您看,我在这捱一上午,还没卖出几斤葡萄,现在紫葡萄和青葡萄都还剩下60斤,不知要卖到何时呢!”艾山其实想央求阿凡提帮他出个推销葡萄的点子,又不好意思说。

阿凡提听出弦外之音,心想:这家伙正好送上门来,使个办法叫他亏点钱吧,也让大伙儿出口气。就来到水果摊前对艾山说:“啊,艾山老弟,你可真笨!紫葡萄虽甜,但价格贵,青葡萄虽便宜,却味道酸。何不把两种葡萄掺在一起,按3元3斤出卖,也就是每斤1元,这样不是既好卖又省事吗?”

艾山一听顿时眉开眼笑,连忙竖起大拇指称赞道:“阿凡提大哥真是聪明,名不虚传,名不虚传!”于是艾山按阿凡提的办法出售葡萄,果然买的人多起来,不多时,120斤葡萄卖光。

可是,当艾山清点卖得的钱数时,不由得皱起眉头:如果按照原来的价格卖,紫葡萄应该卖2元×60=120元,青葡萄应该卖1元×(60÷2)=30元,一共应该能卖到120元+30元=150元,可现在卖得的钱却只有120元,怎么少30元呢?他猫腰瞪眼在葡萄摊前转来转去,找遍每个角落,也不见丢失的30元钱。最后才悟到是让阿凡提给捉弄。当他想追上阿凡提问个明白时,阿凡提早已骑着毛驴走得无影无踪。

小学数学小论文 第3篇

关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、20xx年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、20xx年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的`数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

小学数学小论文 第4篇

一、学习数学史有利于拓宽学生的知识面

小学实施的《义务教育数学课程标准》中明确指出,小学生正处于九年制义务教育阶段,学习的数学课程应重点体现课程的发展性、普及性以及基础性,促使小学阶段的数学教育面向所有小学生。新课程改革后,小学生的素质教育受到社会各界的普遍关注,课外知识的丰富性也显得越来越重要。而通过数学史的学习,有助于学生更好地了解数学的发展历程,更深刻地掌握数学学习的思维方法。小学生学习数学史,可以更深入了解书本上的理论知识,对数学知识有更深刻的认识,充分激发学生学习数学的动机,充分调动学生学习数学的积极性和主动性,使学生更加热爱数学,更加努力学习数学,为更深入的学习数学打下良好的基础,促进学生在数学领域更深层次的发展。

二、学习数学史有利于充分调动学生对数学知识的学习兴趣

在小学数学教学过程中或者教材上适当设置一些有趣的问题、有趣的游戏或者丰富的故事,有利于提高数学教学过程和数学课本的趣味性,而数学史中有趣的游戏和故事都有着不一样的历史背景,小学生对其充满了好奇和兴趣,并且还可以改变单一的教学方式,丰富数学课堂教学内容,充分激发小学生学习数学知识的主动性和积极性,推进小学数学教育模式的现代化和科学化。如,数学课堂或者数学课本上有趣的问题:哥德巴赫猜想、四色问题;有趣的故事:十进制(一个手指的故事)、高斯的故事;有趣的游戏:七巧板拼图、摆火柴等,这些故事、游戏、问题都有助于激发学生对于数学知识的兴趣,同时还可以活跃数学课堂上的气氛,让学生在愉快、轻松的氛围中快乐地学习。小学教师不仅要充分利用数学教材上提供的故事、游戏、问题,还要通过其他方式收集一些有趣的、对于学生学习有利的数学资料,在对小学生进行教学时,融入这些有益的教学材料,充分调动小学生对于数学的学习兴趣,将学生被动的`学习转变为主动的学习。

三、学习数学史有利于加强小学生对数学知识的理解

小学数学在教学过程中融入数学史的介绍,还可以帮助学生更好地了解数学知识的来源,更好地利用数学知识,树立良好的科学探索精神和正确的价值观。由于小学数学在教学过程中,教师通常都采取单一的教学模式,在教学内容中,教材上的理论知识占据了绝大部分,导致小学生在学习数学的过程中感到枯燥乏味,毫无趣味性可言,对于刚刚踏入学习之路的小学生而言,很难调动小学生学习数学的动力和兴趣。而在小学数学课堂中融入数学史,可以使一些枯燥的理论知识变得生动形象,富有立体性和形象性,有助于加强学生对所学理论知识的理解,更好地掌握数学知识,从而提高小学生的学习效果。

小学数学小论文 第5篇

内容提要:在数学课堂教学中,围绕“数学问题”这一主题,寻求切实可行的解题策略,有效地进行教学活动,引导学生结合学习、生活实践,初步学会从数学的角度提出问题,灵活的理解问题,创造性的解决问题,并能合理地应用问题。从问题提出——解决及应用的过程中提高学生的数学素质,提高学生的创新意识及实践能力。

关键词:小学数学 问题解决

正 文: 全日制义务教育《数学课程标准》(实验稿)中课程具体目标明确提出:要让学生“初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。”“形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力和创新精神。”基于这一基本要求,在数学课堂教学中,我们可以围绕“问题”这一主题,寻求切实可行的方法,有效地进行教学活动,引导学生结合学习、生活实践,初步学会从数学的角度提出问题,灵活的理解问题,创造性的解决问题,并能合理地应用。从问题提出——解决的过程中提高学生的数学素质,提高学生的创新意识及实践能力。基于以上认识,我们在数学课堂教学中进行了初步探索,获得了一些粗浅的认识。

一、引导学生从数学的角度提出问题。

爱因斯坦认为“提出一个问题往往比解决一个问题更重要,因为解决问题也仅仅是一个数学上或实验上的技能而已,而提出新的问题,新的可能性,从新的角度去看待旧的问题,却需要有创造性的想象力,而且标志着科学的真正进步。”在小学数学教学中,培养学生的提问能力,对于开发学生智力,发展学生思维,变被动学习为主动地探究,对于真正提高学生的全面素质有积极的作用。那么,怎样才能使学生从数学的角度提出问题呢?

1、创设问题情境,激发学生提问。生活蕴涵着大量的数学知识,数学问题多在具体的生活情境中产生。教师要抓住学生思维活动的热点和焦点,根据学生认知的 “最近发展区”,为学生提供丰富多彩的背景材料,从学生熟悉的事物、事件等入手,采用现实再现、猜迷、讲故事、游戏、竞赛等手段,创设生动有趣的、具有挑战性的问题情境,使学生自主产生问题,激发探究的欲望。

如:在教学《连乘应用题》时,教师创设这样一个问题情境:星期天,你妈妈让你去买两箱牛奶,那时你会思考那些问题?学生根据自己的生活经验,纷纷发言:每箱牛奶多少钱,至少该带多少钱?;也可以是每瓶牛奶多少钱?每箱牛奶有几瓶?至少带多少钱?……这样,学生提出了许多切题的有价值的问题。教师及时提问,“你准备怎样解决以上问题?”通过讨论得出两个方法:看标价说明;问售货员。

这时可呈现两种情境:

①通过调查知,每箱牛奶48元,买2箱。

②通过调查知,每箱牛奶24瓶,每瓶2元,买2箱。并提问:“你能根据以上两条信息,解决哪些数学问题?

学生马上提出:

根据调查①可解决买两箱牛奶共需多少钱?;

根据调查②可解决一共买了多少瓶牛奶、买一箱需多少钱、买两箱需多少钱?等数学问题。接着教师组织学生通过独立思考、合作交流等形式解决了以上问题?……这样,教师通过创设学生熟知的生活中的购物情境,给学生提供一个广阔的思维空间,让他们自主的、全方位的、多角度的思考问题。

2、发扬民主意识,培养学生敢于提问、善于提问的能力。“好学多问”是孩子的一种天性,学生提出问题标志着其思维的萌发,小学生数学问题的提出直接体现他们对生活中数学的'思考能力。但是,由于小学生没有掌握好提问的方法和技巧,课堂表现为“怕提问”。

要学生提问,就要培养学生敢于提问的勇气和胆量。教师应尊重每一位学生,通过自己的言行、态度,给学生一个个安全、信任、尊重的情感信息,激发学生的情感共鸣,实现自主提出问题的学习行为。曾有这样一个课例:一位语文教师在教学中,一位学生对“四万万同胞”的“四万万”提出了疑问,许多学生发出哄笑。这位教师不但没有责怪学生愚昧无知,反而鼓励了他,同时在解决“四万万”就是“四亿”概念的基础上,进行“为什么用四万万而不用四亿“的研究,加深了学生对文章的理解。不但获得良好的教学效果,而且使提问学生增强了学习的信心,培养了学生敢于提问的决心。

可见,只有当学生能积极思考,大胆表述时,教师才知道学生“疑”在哪里,“惑”于何处。才能对所教知识进行有效的指导、点拨和调整。反之,如果教师把学生的一些发自内心却又异想天开的问题,看作是旁门左道,是“有意捣乱”采取压制的方法,那么,久而久之,学生思考问题、提出问题的积极性、主动性将会大大降低,甚至被扼杀,成为真正接受知识的“容器”。所以,发扬民主意识是学生敢于提问的前提,是开启思维之门器官的钥匙。

3、引导学生积极反思,进一步掌握提出数学问题的针对性。学生在学习活动中的反思是学生以自己的学习活动过程作为思考对象来对自己的行为、决策以及所产生的结果进行审视和分析的过程,是一种通过提高参与者的自我觉察水平来促进能力发展的途径。在数学教学过程中,经常引导学生对本堂课所涉及的数学问题进行自觉反思,逐渐明确哪些问题是有价值的,哪些问题是无关紧要的,使以后提问更贴近所学数学内容,从而提高学生善于提出数学问题的能力。

二、引导学生灵活地、创造性地解决问题。

引导学生从数学的角度提出问题仅仅是教学的开始,“问题解决”的核心内容就是要让学生灵活地解决问题。同时,在解决问题过程中,其活动的价值不只是获得具体的结论,更多的是使学生在解决问题的过程中经历、体验知识产生的原始状态,体会到解决问题的不同策略,每一个人都应当有自己对问题的理解,并在此基础上形成自己解决问题的基本策略。这样,在鼓励个性发挥的意义之下,学生的创新精神的培养才成为可能。

怎样丰富学生“问题解决”的实践过程,在灵活多样的问题解决过程中,尽量使每位学生发挥其思维的最大潜能,使他们感到脑力劳动中取得成功的喜悦,已成为我们数学课堂教学中思考的重要课题。

首先,要激励学生自主探究,寻求方法。数学学习活动中,学生是学习的主体,在学生进入角色以后,教师应留出足够的时间让学生探究交流,寻求解决问题的方法,并发表自己的独特见解和感受。

有一位教师在叫“两位数加一位数(进位)”时,一改往常教材中的“讲解式”(摆小棒)的呈现方式为学生自主探究的“问题发现式”,这位教师是这样设计的: “爸爸让明明计算18+7,明明冥思苦想了一会儿,向同学们求助,谁有妙法帮我吗?”一石激起千层浪,同学们顿时情绪高涨,积极思考,此刻教师及时组织学生讨论,通过小组讨论、同桌互说等形式,充分发挥集体的作用,体现团结合作的精神,让每个学生都有主动参与的机会,加强了学生间多向交流。最后,学生想出了多种方法:有把18看成20(20+7-2)的;有把18分成13和5(13+7+5)的;有把7分成2和5(18+2+5)的;有数手指的;也有用竖式计算的,等等。 学生通过自主探究后,用语言表达出自己的思维过程,这正是学生自主创新的一种体现。

问题一旦经过一番努力后被解决,学生就会有紧张愉快的体验,有成就感、自豪感、价值感,这些心理倾向是激励学生进一步探究的源动力。 其次,可建立学习小组。学生的发展存在者不平衡性,无论哪个班的学生,他们的智力发展水平、所具有的能力以及他们对生活、对数学问题的认识是各不相同的。在课堂上,面临着要解决的一个个数学问题,学生的解决方法是各不相同的。为了使不同发展水平的学生都能解决问题,我们可采用小组学习的方法,建立学习小组,小组中学习水平上、中、下的学生进行合理搭配,推荐一个学习水平较高的学生担任组长,让不同水平的层次的学生的信息联系和反馈信息在多层次、多方位上展开。

这样,小组成员对所要解决的数学问题进行适时的合作交流,互相探讨解决问题的最佳策略与方法,互相取长补短,共同达到圆满解决问题的目的。在经常性的合作交流中,提升理解问题、解决问题的能力。 再次,要鼓励学生动手实践,在操作探索中解决数学问题。

皮亚杰认为:“认识一个客体,必须动之与手”、“一切真知都应由学生自己获得,或由他重新‘发明’,至少由他重新构建,而不是草率地传递给他。”因此,教师在教学中因突破教材的局限,变传递结论为鼓励发现新知。

事实证明,学生提出的问题,有很多可以让学生自己通过操作探究而获得。如针对学生所提问题“圆柱上下两个底面的面积相等吗?”教师可以不直接告诉学生,而引导学生动手操作,让他们对自己的圆柱模型进行自主操作,讨论“有什么方法验证圆柱两个底面是否相等?”这样学生通过剪、量、叠等多种方法,进行积极地讨论、探索,得出“把上下两个底面剪下叠起来,是否完全重合”;“量上下两个底面的直径、半径、周长,是否相等”;“上下两个底面的对称轴是否相等”等多种检验方法,并从中得出“圆柱上下两个底面面积相等”这一结论。学生通过这样的学习过程,自己动手、动脑、动口、动眼,解决了问题,使其即知其然,又知其所以然。 又如,在学习“平行四边形”这一内容时,一位教师设计了这样一题:“请在下面平行四边形上画一直线,使分成的两部分面积相等。”

于是学生纷纷投入“如何分”的学习活动中,热烈地讨论、大胆地尝试、独立地操作、积极地思考……结果找到了不同的解题方法。(如图) ……得出,这样的线可画无数条。 但教师并不到此为止,而是接着提问:这些平分线有什么共同的特点吗?再次激起了学生的探究热情,学生通过讨论明白了只要是通过平行四边形中心点的直线,都能平分这个平行四边形,同时孕伏了平行四边形是中心对称图形这一知识。这样的处理使学生获取知识、拓展思路、培养能力有机的结合起来了。

三、引导学生合理地应用知识,发展学生的应用意识。

学生的应用意识主要表现在“认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其现实背景,并探索其应用价值。”(数学课程标准) 学生学习数学不但要弄清课堂所提的问题,掌握现成的数学知识和技能,而且要知道如何运用课堂上所解决问题的方法自觉地、有意识地认识周围的事物,理解并处理有关问题,使所学知识成为与生活和社会有密切联系的内容,真正做到数学“从生活中来,再用之于生活”。在这方面,教师要自觉做到学生“用数学”的引导者。

例如,学了“统计知识、价格与购物计算、长度、面积、体积、容积等测定”后,我们要尽可能提供给学生实际操作的机会,引导学生把数学用之于生活,我们可以让学生量一量教室的长、宽;量一量黑板、课桌、书本的长和宽;量一量家中家具的长和宽、爸爸妈妈的身高;测一测爸爸妈妈的体重;算一算逛街所购货物的价格等,在“用数学”中,体验所学知识的作用,更大地调动学生学习的积极性,激发学生解决问题的兴趣,又使学生从中品尝到学以致用的乐趣。

又如,在学习了 “利率、利息”等概念后,一位教师创设情景,引导学生沟通数学与现实的联系,他编制了这样的题目:“今天,爸爸把这月领到的工资1850元存入银行,所存定期三年,那么三年后的今天,爸爸取钱时,可取回多少元?”

这样的问题,与生活非常贴近,容易激起学生的兴趣,他们通过调查,了解银行利率,并应用自己刚学的百分数知识,通过实际计算,学生不仅巩固学习知识,了解了金融知识,从而增长了见识,培养了实际应用数学的能力。 学生的数学知识就是在不断地发现问题、不断地探究问题、不断地解决问题、不断地应用问题的过程中不断地提高、和谐地发展。

抱歉,评论功能暂时关闭!