聚丙烯毕业论文 第1篇
改性PP材料中常通过添加成核剂以提高材料的结晶性来提高材料的刚性。晶区聚合物链比非晶区聚合物链的运动受到了更大的抑制,其热膨胀程度也更低。因此, 添加成核剂的PP材料具有更高的结晶性,其CLTE比加成核剂的PP材料低。
PP树脂、弹性体、填料和成核剂对CLTE影响较大。总结以上方法,可得如下结论:
提高PP树脂的结晶性和分子链取向可降低CLTE。
提高弹性体共聚单体含量,降低相分离程度,提高弹性体MFR,降低其粒径,调节弹性体形态使其与PP基体形成双连续相结构,均可降低CLTE。
加入不同结构的无机填料均可明显降低CLTE。
加入成核剂可提高PP的结晶性,降低CLTE。
聚丙烯毕业论文 第2篇
除了弹性体的形态,弹性体的含量对PP材料的CLTE也有很大的影响。
PP/乙丙橡胶(EPR)合金的CLTE在EPR含量低于20%时缓慢增加,随后显著降低,当EPR含量高于70%时,PP和EPR发生了相反转,且由于EPR的CLTE比PP大,因此PP/EPR合金的CLTE快速增大。当弹性体EPR含量为60%时,PP/EPR合金的CLTE为×10–5°C–1,比30%滑石粉填充(×10–5°C–1)还低,与30%玻纤填充(×10–5°C–1)相当。因此,可在填料含量不高的情况下降低材料的CLTE,从而应用在低密度材料中。
POE是由乙烯和共聚单体聚合制得的。POE_聚单体的含量和类型也会影响PP材料的CLTE。PP与弹性体通常是不相容的,会发生相分离。当共聚单体含量高时,相分离慢;当共聚单体含量低时,相分离快。
对于高共聚单体含量(30%)的POE,PP无定型链从弹性体中相分离慢,被PP的快速结晶阻止,使得PP无定型链保留在弹性体中。因此,PP无定型链段和弹性体的热膨胀受到了结晶PP的抑制,使得CLTE较小。而低共聚单体含量(9%)的POE,由于相分离比PP结晶更快,PP无定型链会扩散到PP晶体间,弹性体和PP无定型链段热膨胀受到的抑制作用少,导致CLTE较大。因此,PP材料的CLTE随着POE弹性体_聚单体含量的增加而降低。
另外,POE的熔体流动性对PP的CLTE也有较大影响,随着POE的熔体流动速率(MFR)的增加,POE在共混材料剪切分散过程中越容易分散形成连续分布的微观相态结构,分散的橡胶相被PP所束缚,从而使得PP材料在MD和TD方向上的热膨胀行为受到了抑制,因此PP材料的CLTE逐渐变小。
聚丙烯毕业论文 第3篇
弹性体橡胶相的形态对PP复合材料的CLTE影响较大。不同橡胶形态的塑料/橡胶共混物热膨胀行为的示意图如下图所示。
(αx,αy和αz分别为x,y,z方向的热膨胀,Δlp和Δlr分别为塑料和橡胶每单位的热膨胀)
图中a橡胶相以球形结构分布在塑料基体中,该体系的CLTE在x,y,z 3个方向的CLTE相同,且为塑料相和橡胶相CLTE之和。
图中b为塑料和橡胶以薄层状结构叠加分布,由于塑料的拉伸弹性模量比橡胶的拉伸弹性模量高50~1000倍,使得橡胶平行于层状方向的热膨胀受到了塑料的抑制,因此在平行于层状结构的xy方向的CLTE降低至塑料的CLTE,而橡胶将朝着垂直于层状的方向热膨胀,导致厚度方向(z方向)的CLTE变大。
图中c为橡胶相变成微层结构且与塑料基体形成双连续相,橡胶在x,y方向的热膨胀受到了塑料的高度抑制,橡胶沿着z方向热膨胀,橡胶的膨胀会对连续相塑料在z方向施加一个拉力,使得塑料也朝着z方向膨胀,使得x,y方向的CLTE进一步降低。
弹性体的形态主要取决于弹性体/PP基体的黏度比。当弹性体/PP黏度比低时, 弹性体沿着MD和TD方向呈棒状,PP垂直弹性体方向结晶取向。当弹性体/PP黏度比中等时,弹性体沿着MD方向成棒状,沿着TD方向成球状,在MD方向,PP垂直弹性体方向取向结晶,在TD方向,PP随机地穿透弹性体,结晶取向降低。
当弹性体/PP黏度比大时,弹性体在MD和TD方向均成圆形,表明弹性体为球形,PP随机地穿透弹性体,结晶取向进一步降低。随着弹性体/PP黏度比的增大,MD和TD方向的CLTE增加,厚度方向降低。