数学建模论文模板(实用9篇)

个人学习 6 0

数学建模论文模板 第1篇

培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。随着科学技术的不断发展,各学科各领域对实际问题的研究日益精确化与定量化,数学在科学研究与工程技术中的作用不断增强,其应用的范围几乎覆盖了所有学科分支,渗透到社会生活中的各个领域。前苏联数学家_洛夫曾说过,“数学在其它科学中,在技术中,在全部生活实践中都有广泛的应用”。1993年,王梓坤院士发表的著名报告《今日数学及其应用》中也深刻指出:“现代世界国家间的竞争本质上是高技术的竞争,而高技术本质上是一种数学技术。”数学是一门技术已经成为人们的共识。数学技术离不开数学建模,数学建模是把数学作为工具,并应用它解决实际问题的一种活动,它是一个跨学科、跨专业、综合性和应用性都非常强的过程,是数学应用的必由之路,是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介。因此,数学建模的过程是一个全而培养学生综合素质、提高学生各种能力的过程,数学建模是培养生产一线应用型人才的一条重要途径。

一、对应用型人才的认识

应用型人才是将专业知识和专业技能应用于社会实践的专门人才是熟练掌握社会生产或社会活动一线的基础知识和基本技能,主要从事一线生产的技术或专门人才社会对应用型人才的基本要求是具有基础扎实,知识而宽,应用能力强,素质高,有较强的创新精神和团队合作精神。他们的突出特点是既具有宽广的知识而和深厚的基础理论,又能将所学知识应用于本行业相关技术领域,适应产业发展对应用型人才市场需求的不断变化,还有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力。

随着高等教育的不断扩招,高等教育的大众化趋势已越来越明显,在这种背景下,传统的“研究型”、“学术型”人才培养模式受到了严峻的挑战,因此,一些发达国家率先提出了“发展应用型大学”,“培养应用型人才”的口号。德国早在20世纪70年代就成立了应用科技大学,其应用型人才的培养特色鲜明,深受欢迎。美国的工程教育,英国的技术学院,日本的短期大学都以培养应用型人才而著称。近年来,我国高等院校对应用型人才的培养取得了一定的进展,但仍然存在认识上的不足,培养方案和措施仍有许多不尽如人意的地方,应用型人才的培养模式还有待于进一步探索。通过多年的实践和探索,根据应用型人才的特点和社会日益数字化,对应用型人才的要求以及数学在各行各业中的广泛应用、数学建模在应用型人才培养中具有不可替代的重要作用。

二、数学建模在应用型人才培养中的作用

数学建模就是用数学语言、方法近似地刻画要解决的实际问题,对于已建立的模型采用推理、证明、数值计算等技术手段及相应的数学软件求解,并利用所得的结果拟合实际问题。数学建模在应用型人才培养中的作用主要体现在以下几个方面:

1.数学建模有利于培养学生的团队合作精神

由于实际问题的'复杂性,在数学建模过程中要涉及到大量的数据收集和对数据的分析与处理,一个完整的建模过程一般要经历模型的假设、模型的建立与求解、算法的设计和计算机实现、对结果的分析与检验并将所得的结果模拟实际问题等几个阶段。这些过程只靠个人的力量在有限时间内是很难完成的,这就注定了数学建模是一个团队的集体行为,需要有师生之间、学生之间以及学生与社会之间的交流与合作。因此数学建模有利于提高学生的团队合作精神,而团队合作精神又是社会对应用型人才的基本要求。

2.数学建模有利于培养学生的创新能力

数学建模所面临的数据是杂乱无章的,这就要求学生对这些数据进行去粗取精,去伪存真,归纳、提炼、整理、加工和总结,还需要对一些已知条件进行符号化和量化,然后从中抽象出恰当的数学关系,从而组建一定的数学模型,再用所学的数学理论和方法去求解数学模型。在对实际问题中的数据进行加工和整理过程中,为使问题简化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并没有一定的范式,这要根据建模者对实际问题的理解、研究问题的目的以及数学背景来完成这个过程,应该说这是一个创造性的过程。另外,数学模型是对实际问题的近似刻画,为了使建立的数学模型尽可能完美地表达实际问题,又使模型易于求解,需要对模型进行不断的改进和不断的完善,这就要求学生不断对问题进行深入的了解,深入到知识的更深层面,这样又会产生新的疑问,这个过程多次循环们复,学生的创新能力将不断得到加强。创新能力也是社会对应用型人才的基本要求。

3.数学建模有利于全方位提供学生的综合素质和能力

一个完整的数学建模过程是综合运用知识和能力,解决实际问题的过程。这不仅需要学生有较好的数学基础和严密的逻辑推理能力,还要求学生对问题的实际背景有一定的了解,要求学生有广博的知识和深厚的专业基础,并能对这些知识进行融会贯通。数学建模面临的数据}I-.}I是庞大而复杂的,对数据的处理过程是一个分析与综合,抽象与概括,比较与类比,系统化与具体化的过程。在这个过程中,学生的应变能力和多角度分析,多方位思考能力不断得到提高,综合素质不断得到加强。综合素质和能力是应用型人才的基本特征和社会对应用型人才的起码要求。

4.数学建模有利于培养学生的动手操作能力和实践能力

从实际问题中抽象出来的数学模型一般很复杂,因此模型的求解一般很困难,甚至无法求出模型的解析解,即使能求出模型的解析解,由于其复杂性而无多大的应用价值。所以数学模型的求解通常需要编写算法,运用某些数学软件利用计算机求其数值解,这就要求学生有较强的数学软件应用能力和对计算机的实际操作能力。在操作的过程中,学生的动手能力和实践能力自然而然得到提高。另外在数学建模中,需要进行调查研究,需要对有关的数据进行广泛的采集和补充,这就是应用型人才培养中所强调的实践性。

5.数学建模体现了知识的应用性

数学建模本身就是综合运用知识,解决实际问题的过程。数学建模中的很多典型案例,如“最优捕鱼策略”,“投资的收入和风险”,“车灯线光源的优化设计”等就较好地突现了知识的应用性。数学建模是数学应用的必由之路,是联系数学与实际问题的桥梁。一方面数学建模需要用数学语言、方法近似地刻画要解决的实际问题,另一方面数学建模需要利用所得的结果拟合实际问题,所有这些都与应用型人才的突出特点和社会对应用型人才的要求是一致的。

6.数学建模有利于培养学生的自学能力和语言表达能力

数学建模需要学生亲自参与问题的研究与探索,数据的收集和补充需要学生的积极参与,数据的处理和模型的建立需要学生的主动参与,模型的求解需要学生独立完成。数学建模一般需要综合运用多方面的知识,需要了解相关问题的背景材料,需要对相关的数据进行合理的取舍和有效的筛选,有些知识和相关的资料需要学生自己去查询,所有这些都为学生的自主学习提供了一个良好的“下台。另外,数学建模需要用自己的语言描述问题的解决过程,需要广泛的交流与合作,还需要进行论文的写作等等,这些都对学生语言表达能力的提高具有重要的作用。应用型人才的一个突出特点就是具有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力,而自学能力和语言表达能力为进一步获取新知识等能力提供了良好的基础。

应该说,数学建模的作用是多方面的,通过数学建模的训练,学生获得了参与研究探索的体验,培养了收集、分析和利用信息的能力,学会了分享与合作,锻炼了学生的意志力、洞察力、想象力、自学能力、语言的翻译和表达能力以及综合应用专业知识解决实际问题的能力与分析问题、解决问题的能力,所有这一切都是应用型人才培养所要达到的目标,也是与应用型人才培养模式的四个基本点是一致的。因此数学建模能将应用型人才的突出特征和社会对应用型人才的要求体现得淋漓尽致,它在应用型人才的培养中具有不可替代的重要作用。

三、关于数学建模的几点建议与思考

1.马克思有一句名言,“一门科学只有成功地应用了数学时,才算真正达到了完善的地步”。不论是自然科学还是社会科学都需要数学,都蕴含数学。一门科学要成功地应用数学,必须对这门学科中的问题建立数学模型。因此,建议高等院校的各个专业都要不同程度地开设数学建模课程,并根据专业的不同要求选择合适的数学建模内容,真正做到“人人学有用的数学,人人做有用的数学,人人用有用的数学”。

2.数学建模课程应增加实训内容,数学建模的学习应以实训内容为主。教师应根据学生的具体情况,女排布置具有综合性、开放性、灵活性和趣味性的实训题目,让学生自己进行调查研究,自己收集数据、分析数据和处理数据,模型的建立和求解要以学生为主体,并以论文的形式提交给教师,教师提供实时指导和帮助,对建模的结果进行有的放矢的点评,并将实训内容作为学生期末考评的主要内容和重要依据。

3.举办多种形式的数学建模竞赛,丰富数学建模的教学内容和教学方式,引进案例教学和专题讲座,通过对典型案例的深入剖析,激发学生的学习兴趣和积极性,培养学生的数学建模思想和坚忍不拔的毅力,聘请专家对一些典型问题进行专题讲座。

数学建模论文模板 第2篇

摘要:对于高职院校的学生来讲,数学在其教学过程中起着基础性的作用,对于学生后续的学习相当关键。但是从现阶段高职院校数学教学的基本情况来看,数学教师的教学方法以及教学策略都相当落后,对于学生数学兴趣的提升造成了不同程度的影响。在这样的背景下,相关专家提出了数学建模的方式,希望以此提升高职院校高等数学的教学效率。本文结合数学建模在高职高专人才培养当中的意义和作用入手,对于其中的应用策略进行全面的分析,希望为相关单位提供一个全面的参考。

关键词:数学建模;思想;高等教学

1引言

随着我国社会的发展,经济产业结构日益升级,因此高等院校的人才需求日益扩大,对于高职教育的发展提供了前所未有的契机。在这样的背景下,从数学建模入手,将其思想融入到高等教育的数学教学当中,对于其中的策略和方法进行全面的研究应该是一项具有普遍现实意义的工作。

2数学建模在高职高专人才培养过程中的意义

从近些年的发展来看,参加过数学竞赛的学生在科研能力等方面都具有比其他同学更强的优势,因此数学建模在提升学生创新能力、提高学生知识水平以及调动学生的.学习兴趣都具有十分重要的意义。比如在解决实际问题的时候,数学建模通过利用各种技巧,可以使得学生分析问题、创造能力得以全面的提升,进而使得学生在摒弃原始思考问题方式的基础上,敢于向传统的知识发出挑战,对于学生的综合能力的全面提升相当关键。其次,数学知识本就源于生活,因此在建模的基础上学生就可以带着问题去思考,这对于数学知识整体性的发挥以及解决问题能力的提升都具有十分重要的意义。最后,面对传统数学的解决方式,很多学生望而生畏,因此主动分析问题的欲望就会受到遏制。在这样的背景下,通过数学建模方式,学生会发现数学方法的灵活性,进而使得他们解决问题的能力得以全面的提升。

3数学建模方式在高等数学中的应用

制定切实可行的教学大纲,从而使得教学进度得以保障。教学大纲在高职教学当中起着十分重要的作用,这对于教学内容的合理性以及提升学生学习的针对性都具有十分重要的意义[1]。比如在教学高等数学(一)的选修模块时,教学大纲的制定应该结合学生的专业,从而使得学生的数学学习真正取得实效。比如可以为理工类的学生选择无穷级数以及傅里叶变换的内容;机械类的学生选择线性代数以及解析几何作为教学内容,从而使得学生的综合能力得以全面的提升。开展“三段式”的教学模式。数学建模在以解决实际问题为核心的过程中,使得学生分析问题以及组织问题的能力得以全面的提升,这种方式的本质为素质教育,因此不能和现行的其他教学模式分割开来,这就需要相关部门开展“三段式”的教学模式,使得学生的数学兴趣得以全面的提升。其中,第一段需要还原数学知识的原创过程,使得学生明确数学知识的产生过程,进而让学生从生活案例当中发现数学的价值,比如知道极限是由人影的长度变化引起的,导数是由于驾车的速度引入的,使得学生发现知识的价值,进而就会大大提升自己的学习兴趣和探究意识。第二段:讲解数学知识。数学建模是在实际问题当中引入的,因此要通过具体数学知识的讲解使得学生明确数学建模的真正价值,比如在讲解微积分的过程中,可以以“极限-微分-积分”为主线,使得学生对于数学的分析能力真正得以提升[2]。然后在为学生积极引入大量数学图表的基础上,为增强学生的感性认识,进而提升学生的综合能力奠定坚实的基础。第三段:数学知识的运用。随着社会的发展,数学的应用在各行各业都发挥出巨大的作用,因此对于高等数学在实际生活当中发挥出来的作用进行全面的探究是实现这种知识价值的真正途径。在这样的背景下,高等数学教师要将每个知识点的运用真正灌输给学生,比如指数增长在银行计息当中的应用、定积分在学习曲线当中的应用、再生资源在数学开发以及管理当中的应用等等。从而使得学生数学学习中的创新意识以及应用能力得以全面的提升。开设数学实验,提升学生的综合素质。数学建模为学生提供了一种真正的“数学实验”,在这种实验的过程中,学生对于数学知识的发展以及由来过程都会得到进行全面的考虑,这对于他们数学探索意识的提升具有十分重要的意义。另外,在计算机辅助实验的过程中,学生的动脑能力也会得到全面的提升,这对于学生主动的学习数学相当关键。因此在教学过程中,教师要积极利用这种方式对于学生进行全面的培养。

参考文献:

[1]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教学中的探讨[J].景德镇高专学报,20xx,(4).

[2]张卓飞.将数学建模思想融入大学数学教学的探讨[J].湘潭师范学院学报(自然科学版),20xx,(1).

数学建模论文模板 第3篇

在小学数学教学中恰当地运用数学模型方法,揭示数学的本质,在接替过程中引发与选择思维方向,都具有很大的启发性。所以我们应当在教学中帮助学生逐步建构模型、应用模型,就是要求教师致力于数学建模的引领,让学生体验数学建模的过程,从而取得数学活动经验。它是把“创造过程中的数学”纳入数学教育的一种可行手段。

正如弗赖登塔尔所认为的:“学生自己发明数学就会学得更好”,“让他们经历数学化的过程,这是教学的第一原则”。

一、建模的策略

1、精选问题,创设情境,激发建模的兴趣。

数学模型都是具有现实的生活背景的,这是构建模型的基础和解决实际问题的需要。如构建“平均数”模型时,可以创设这样的情境:4名男生一组,5名女生一组,进行套圈游戏比赛,哪个组的套圈水平高一些?学生提出了一些解决的方法,如比较每组的总分、比较每组中的最好成绩等,但都遭到了否决。这时“平均数”的策略应需而生,构建“平均数”的模型成为了学生的需求,同时也揭示了模型存在的背景、适用环境、条件等。

2、充分感知,积累表象,培育建模的基础。

数学模型关注的对象是许多具有共同普遍性的一类事物,因此教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知这类事物的特征或数量相依关系,为数学模型的准确构建提供可能。如一年级“凑十法”模型构建的过程就是一个不断感知、积累的.过程。首先通过探究学习9加几的算法,初步了解凑十法;接着采取半扶半放的方式学习“8、7加几”的算法,进一步感知凑十法更广的适用范围;最后,学习6、5、4加几,运用凑十法灵活解决相关计算问题。学生经历了观察、操作、实践、讨论,体验到了“凑十法”的内涵,为形成“凑十法”的模型奠定了坚实的基础,提供了充分的准备。

3、组织跃进,抽象本质,完成模型的构建。

实现通过生活向抽象数学模型的有效过渡,是数学教学的任务之一。具体生动的情境问题只是为学生数学模型的建构提供了可能,如果忽视从具体到抽象的跃进过程的有效组织,那就不成其为建模。如四年级上册“平行与相交”,如果只是让学生感知火车铁轨、跑道线、双杠、五线谱等具体的素材,而没有透过现象看本质的过程,当学生提取“平行线”的模型时,呈现出来的一定是形态各异的具体事物,而不是具有一般意义的数学模型。而“平行”的数学本质是“同一平面内两条直线间距离保持不变”,教师应将学生关注的目标从具体上升为两条直线及直线间的宽度(距离)。可以让学生通过如下活动来组织跃进过程:

(1)提出问题:为什么两条直线永远不相交呢?

(2)动手实验思考:在两条平行线间作垂线。量一量这些垂线的长度,你发现了什么?你知道工人师傅是通过什么办法使两条铁轨始终保持平行的吗?

经历这样的学习过程,学生对平行的理解必定走向半具体半抽象的模型,从而构建起真正的数学认识。在这一过程的组织中,教师要引导学生通过比较、分析、综合、归纳、操作等思维活动,将本质属性抽取出来,构成研究对象本质的关键特征,使平行线完成从物理模型到直观的数学模型,再到抽象的数学模型的建构过程。

4、重视思想,提炼方法,优化建模的过程。

不管是数学概念的建立、数学规律的发现还是数学问题的解决,核心问题都在于数学思维方法的建立,它是数学模型存在的灵魂。如《圆柱的体积》教学,在建构体积公式这一模型的过程中要突出与之相伴的“数学思想方法”的建模过程。一是转化,这与以前的学习经验相一致,是将未知转化成已知;二是极限思想,这与把一个圆形转化为一个长方形类似,是在众多表面上形态各异的思维策略背后蕴藏的共同的具有更高概括意义的数学思想方法。重视数学思想方法的提炼与体验,可以催化数学模型的建构,提升建构的理性高度。 5、回归生活,变换情境,拓展模型的外延。

人的认识过程是由感性到理性再到感性循环往复、螺旋上升的过程。从具体的问题经历抽象提炼初步构建起相应的数学模型,并不是学生认识的终结,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升。如初步建立起来的“鸡兔同笼”问题模型,它是通过“鸡”、“兔”来研究问题、解决问题从而建立起来的。但建立模型的过程中不可能将所有的同类事物列举穷尽,教师要带领学生继续扩展考察的范围,分析当情境数据变化时所得模型是否稳定。可以出示如下问题让学生分析:

9张桌子共26人,正在进行乒乓球单打、双打比赛,单打、双打的各几张桌子?”“甲、乙两个车间共126人,如果从甲车间每8人中选一名代表,从乙车间每6人中选一名代表,正好选出17名代表。甲、乙两车间各有多少人?”……这样,便可使模型不断得以丰富和拓展。

二、拓宽建模的途径

开展数学建模活动,关注的是建模的过程而不仅仅是结果,更多的是培养思维能力,特别是创造能力。因此,在小学数学教学中要转变观念,革新课堂教学模式,以“建模”的视角来处理教学内容。

1、根据教学内容,开展建模活动。

教材中的一些内容已经考虑按照建模的思路编排,教师要多从建模的角度解读教材,充分挖掘教材中蕴含的建模思想,精心设计和选择列入教学内容的现实问题情境,使学生从中获得“搜集信息,将实际问题数学化,建立模型,解答问题,从而解决问题”的体验。

2、上好实践活动课,为学生模仿建模甚至独立建模提供有效指导。

重点应放在对问题背景、问题条件的考察以及模型建立过程的引导与分析上,力图使学生弄清其中所蕴涵的思维方式与方法。可以结合教材内容,适当对各种知识点进行整合,并使之融进生活背景,生产出好的“建模问题”作为实践活动课的内容。如苏教版六(上)安排了这样的问题:找10盒火柴,先在小组里拼一拼,看看把10盒火柴包装成一包有哪些不同的方法、怎样包装最节省包装纸。

3、改编教材习题,放大功能,使建模教学成为一种自觉行为。

教材上许多应用题已不是实际问题的原形,可以根据需要对一些题目进行开发,使其成为建模的有效素材。如将教材“从一点画一条已知直线的垂线”的内容改成:“从某村庄修一条到河边的小路,怎样最近?”再如教材中“正方形面积是8平方厘米,求其内接圆的面积”,如果只是一做了事,那么它的价值就不能完全体现出来。可以利用它开展建模活动:可以设圆的半径是r,探讨出圆的面积与正方形面积之间的关系:πr2/4r2=π/4,从而建立起关系模型,进而解决问题;也可以另辟蹊径,先通过“圆内接正方形面积是6平方厘米,求圆的面积”这一问题的解决,建立模型,圆的面积是正方形面积的 倍。再将原问题进行转化,从而获得解决。

学生学习数学模型的方法需要经历一个长期的、不断积累经验、不断深化的过程,需要教师在教学的实践中结合数学知识的教学反复孕育,让学生亲身经历建模过程。

数学建模论文模板 第4篇

一、小学数学建模

_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位

1.定位于儿童的生活经验

儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式

小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。

三、小学_数学建模_的教学策略

1.培育建模意识

当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是_生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释_.培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。

2.体验建模过程

在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己_创建_新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备_模型_思想,处理问题的过程能具备数学家的_模型化_特点,从而使_模型思想_影响其生活的各个方面。

3.在数学建模中促进自主性建构

要使_知识_与_应用_得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼_现实问题_的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。

我们以《比较》这课程内容为例,我们通过_建模_这一教学方法,培养学生对_>____

四、总结

数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。

数学建模论文模板 第5篇

随着社会经济的飞速发展,数学在各种领域中所发挥的作用也越来越显著“高技术实质即数学技术”这一观点广受肯定,有关数学的应用性也备受社会各界关注和重视。为了反映社会及经济发展的需要,我国教育在培养学生时,除了要求其掌握理论知识以外,还要求其能够利用数学思想及方法,及时发现和解决实际中所遇到的各类问题,最终成为同社会及经济发展相适应的应用型人才。而这种利用数学思想分析实际问题,找到数学关系及规律,并将该问题转变为数学问题,构建相应的数学模型,从而解决问题的过程即数学建模。为此,各高校在培养应用型人才时,必须注重加强学生数学建模能力的提升。

一、对高校应用型人才培养的认识

所谓的“应用型人才”,指的是能够利用所学知识及专业技能在社会及经济活动中予以正确实践的专业化人才,也是具备生产一线基础知识及技能,专门从事一线生产的人才。社会对于应用型人才提出了如下要求:不仅具备扎实的基础,宽泛的知识面,较强的应用能力,还具有较高的素质,拥有创新及团队合作意识。其突出特点即知识面宽广、理论基础深厚,可以讲所学知识正确地应用于相关行业领域,同时,能够适应市场经济发展对于人才需求的逐步变化,还具有进一步接受教育与汲取新知识的能力,能够逐步扩展同职业相关的学科能力。

随着我国各大高校扩招力度逐步加大,高等教育正在逐步朝着大众化趋势发展,传统学术型或研究型人才培养模式面临着越来越严峻的挑战,为此,不少发达国家纷纷提出了“培养应用型人才,发展应用型高校”等战略方针。其中,德国早在上个世纪70年代就已经成立了首座应用型科技大学,专门培养和发展应用型人才,并受到了普遍的欢迎,此外,美、英、日也纷纷建立了应用型高校。近些年来,我国各大院在培养应用型人才方面也取得了显著的成果,但由于认识方面存在不足,因此,应用型培养方案及实施过程仍存在诸多问题,培养模式有待进一步完善。经多年探索,结合数学在各个领域中的广泛应用及培养应用型人才的相关要求,借助于数学建模加快高校应用型人才的培养具有十分重要的作用。

二、数学建模对我国高校应用型人才培养的现实作用分析

数学建模需要利用数学知识、语言及方法,对实际问题进行刻画,对于已建立的模型通过推理、证明、计算等,并通过数学软件来求解,对求出的结果同实际问题相似合。具体而言,数学建模对我国高校应用型人才培养的作用表现在如下方面:

(一)有助于团队合作意识的培养

鉴于实际问题往往相对复杂,因此,数学建模时需要搜集大量的数据及信息,并对这些数据进行筛选、分析和处理,建模时通常需要对模型进行假设、建立、求解,并对模型的计算进行设计,利用计算机软件对结果进行分析和检验,将结果同实际问题进行拟合,此过程在短暂的时间内,仅仅依靠一个人的力量是很难完成的,因此,数学建模过程往往需要组建一个团队,要求学生相互之间、师生间以及与社会间进行有效地沟通与合作。因此,数学建模有助于培养学生的团队合作意识,这方面恰恰是社会对于应用型人才培养的最基本要求之一。

(二)有助于创新能力的培养

由于数学建模过程中所涉及的数据多数杂乱无章,因此,要求学生能够有效地进行筛选,去粗取精,经过一系列归纳、整理、加工、提炼与总结,对已知条件进行量化,并对数学关系进行恰当描述,最终组建出相应的数学模型,再通过所学理论及方法对该模型进行求解。为了简化实际问题,必须针对各种因素进行分析,对其中可忽略不计的因素进行判断,这要求学生必须对实际问题具有深刻地理解,明确研究目标及数学背景,以完成这一创造性的过程。此外,数学模型必须对实际问题进行真实、近似地刻画,以求所构建模型能够近乎完美、全面地表达这一实际问题,同时,还要求该模型容易求解,为此,必须对该模型进行不断改善,要求学生可以进入更深的知识层面中,反复产生更多新问题,往复循环,从而实现学生创新能力地逐步提高,满足应用型人才的相关要求。

(三)有助于学生综合素质及能力的培养

数学建模实质上就是综合运用数学知识及方法解决社会实践问题的过程,要求学生除了具备扎实的数学基础及逻辑思维能力以外,还对实际问题的背景具有一定的了解,能够对所具备的各类知识进行融会贯通。数学建模数据庞大而又复杂,因此,处理数据不仅需要分析和综合,还需要抽象、概括、比较、类比等多个过程,经过如此种种的培养,学生应变能力、全面分析及综合思考能力均得到了有效地提高,逐步加强了个人的综合素质及能力培养,这也是成为应用型人才的基本要求。

(四)有助于学生实践操作能力的培养

通常而言,以实际问题为依据所抽象和建立起的数学模型往往十分复杂,因此,数学模型求解过程也很困难,甚至难以求出解析解,即使可以求得也因过于复杂而缺乏足够的应用价值。因此,求解数学模型时需对计算方法进行设计和编写,利用数学软件对该数值解进行计算,要求学生必须具备数学软件及计算机操作及运用能力,经这些过程的锻炼,学生实践动手能力也势必得到了大幅度地提高。此外,数学建模需进行调研,对数据进行广泛搜集和补充,此即培养应用型人才中所格外关注的践性。

(五)全面体现了理论知识的实践应用性

数学建模中存在许多较为典型的案例,例如,“最优化捕鱼策略”,“投资收入及风险”等等,这些都凸显了数学知识强大的应用性。因此,数学建模已经成为数学应用的必经之路,也是将数学和社会实践联系起来的枢纽和桥梁。数学建模需借助于数学知识及方法,对所需解决的问题进行刻画,同时,数学建模还必须对所计算的结果同实际问题相似合,其全面体现了数学理论知识的.实践应用性,这方面同社会对于应用型人才培养的要求是相互契合的。

(六)有助于学生自主学习及表达能力的培养

数学建模要求学生自主分析、探索和解决问题,无论是数据收集、补充、完善,还是构建模型,都需要学生主动参与其中,独立解决求解等过程,此外,建模需要全面运用各个专业学科知识,掌握不同的背景资料,科学判断和取舍相关数据,同时,要求自主查询实际问题所涉及到的知识及资料,所有这些都为培养学生的自主学习能力提供了良好的条件。数学建模过程要求采用学生自己的语言对实际问题进行描述和解决,需要深度地沟通和交流,也需要对论文进行写作,因此,这些也提高了他们的语言组织及表达能力。在培养应用型人才时,一个显著特点即要求其具备继续教育及汲取新知识的能力,能够拓展同职业相关的理论专业知识及技能,而数学建模培养了学生的自主学习及语言表达能力,为他们进一步汲取新知识、提高新技能打下了坚实的基础。

可以这样说,经过数学建模的系统化训练,学生收获了探索实际问题的真实体验,提高了信息收集、筛选、分析及运用能力,明白了分享与合作的重要性,锻炼了洞察力、意志力、自主学习、语言表达、专业知识综合运用、分析及解决问题的能力等等,所有这些都满足应用型人才培养目标,同应用型人才培养模式的要求保持一致。因此,数学建模在高校应用型人才培养过程中发挥着巨大的作用。

三、提高大学生数学建模能力的若干建议

(一)设立专门的数学建模课程

高校应设立专门的数学建模课程,要求数学教师必须具备足够的数学建模知识及能力,一方面,能够在课堂教学过程中渗透数学建模思想及应用的重要性;另一方面,可以将数学建模和学科知识理论相结合,游刃有余地引导学生学习和应用数学知识及方法。利用实践问题及典型案例,灵活穿插于课程教学之中,使学生逐步提高数学建模能力,并对数学建模产生浓厚的兴趣。

(二)将应用型人才培养目标与数学建模相结合

要明确学生的主体地位,无论教学还是数学建模竞赛辅导,都必须将课堂主体这一地位让出来,让学生自主进行案例阅读、信息搜集及处理、模型建立及讨论,将大家从被动接受转变为主动探索与思考,提高其学习兴趣,同时,充分发挥其潜力,提高其独立思考及解决问题的能力,逐步提高自身的综合素质,不断朝着应用型人才方向发展。应用型人才培养要体现专业优势,它与数学建模是紧密联系的。在实际培养过程中,要以数学科目为基础,运用数学软件等工具,为数学建模提供必要的支持,并为日后在社会实践中的应用打下良好的基础。

(三)抓好建模教学两大阶段

一是在全校范围内开设建模课程,便于有兴趣的学生学习基础性的建模知识,接触简单的问题及模型,了解数学建模课程的基本方法和内容;二是暑期强化培训阶段,为了更好地应对数学建模竞赛,必须对学生的数学建模能力进行强化锻炼,提高其数学应用能力。在这两个阶段内,教师的作用至关重要,暑期培训主要针对的是有一定专业基础、自主动手能力较强、建模积极性较高的学生。因此,在这个阶段,应选择历届数学建模竞赛题向学生进行讲解,由拥有丰富经验的教师进行专题报告,同时,组织大学生对竞赛进行模拟,由往届学生传授竞赛经验,使学生自主寻找解决问题的方法,提高创新能力。

(四)设立数学建模小组及建模协会

在教学培养中设立数学建模竞争小组,依据现有师资力量,对不同资质、兴趣、特长和专业的教师进行分组。不同类型小组负责指定工作内容,要保证培训、学习和竞赛目标的高效完成。此外,还可设立相应的建模协会,组建对外开放的数学建模实验室,建模协会每年定期在校园内举报建模竞赛,请教师或历届获奖学生进行建模知识讲座,对数学建模进行宣传,培养大学生的学习兴趣,为优秀参赛人员的选拔奠定基础,这样不仅丰富了学生业余文化生活,还提高了其科研水平。

数学建模论文模板 第6篇

一、数学教材设计存在缺陷

现行高中数学教材将数学建模内容散布于各数学知识教学单元内容之中。此种课程设计固然便于学生及时运用所学数学知识解决实际问题,但却存在诸多弊端。将数学建模内容分置于各数学知识教学单元的课程设计遮蔽了数学建模内容之间所固有的内在联系,致使教师难以清晰地把握高中数学建模课程内容的完整脉络,难以准确地掌握高中数学建模课程内容的总体教学要求,难以有效地实施高中数学建模课程内容的整体性教学。而学生在理解和处理数学知识教学内容单元中的具体数学建模问题时,既易受到应运用何种数学知识与方法的暗示,也会制约其综合运用数学知识方法解决现实问题。从而势必影响学生运用数学知识方法建立数学模型的灵活性与迁移性,降低数学建模学习的认知弹性。

二、高中数学建模课程师资不足

许多高中数学教师缺少数学建模的理论熏陶和实践训练,致使其数学应用意识比较淡漠,其数学建模能力相对不足,从而制约了高中数学建模教学的效果。高中数学教师所普遍存在的上述认识偏差、实践误区以及应用意识与建模能力方面的欠缺,严重阻碍了高中数学建模课程目标的顺利实现。

三、学生学习数学建模存在困难

相当多数高中学生的数学建模意识和数学建模能力令人担忧。普遍表现为:难以对现实情境进行深层表征、要素提取与问题归结;难以对现实问题所蕴涵的'数据进行充分挖掘、深邃洞察与有效处理;难以对现实问题作出适当假设;难以对现实问题进行模型构建;难以对数学建模结果进行有效检验与合理解释等。

1.编写独立成册的高中数学建模教材。将高中数学建模内容集中编写为独立成册的高中数学建模教材。系统介绍数学建模的基本概念、步骤与方法并积极吸纳丰富的数学建模素材且对典型的数学建模问题依步骤、分层次解析。

2.加强高中数学建模专题的师资培训。

高中数学教师是影响高中数学建模课程实施的关键因素。他们对数学建模的内涵及其教育价值的理解、所具有的数學应用意识和数学建模能力水平等均会在某种程度上影响高中数学建模教学的开展与效果。目前高中数学建模师资尚难完全胜任高中数学建模课程的教学,绝大多数高中数学教师在其所参加的新课程培训中并未涉及数学建模及其教学内容。因此应有计划地组织实施针对高中数学建模专题的教师培训。

3.探索高中学生数学建模的认知规律。

数学建模是需要学生深度参与的一项较为复杂的认知活动过程。在数学建模实践中,多数学生确实遇到了较大的困难与挑战,需要教师的科学指导,这就要求教师必须以深刻把握学生数学建模的认知机制与学习规律为前提。

数学建模论文模板 第7篇

一、引言

随着我国高等教育的发展,高校招生规模越来越大,而生源质量较低,特别是独立学院院校。就我校而言,绝大多数专业都开设了数学类课程。但在教学中,普遍认为理论性太强,与实际脱节严重,不能引起学生的学习兴趣。并且,传统教学忽视了学生用数学解决实际问题的能力,所以,进行数学教学改革势在必行。数学建模可培养学生利用数学知识解决实际问题的能力,通过数模方法对实际问题进行巧妙处理,让学生体会到数学不仅能传播理论知识和求解一些数学问题,还可将其应用到实际问题中,让学生看到一些实际模型的来龙去脉,提高学生的学习积极性。数学建模是培养学生综合科学素质和创新能力的一个极好载体,而且能充分考验学生的洞察能力、创新能力、联想能力、使用当代科技最新成果的能力等。学生们同舟共济的团队合作精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好的培养。技能技术的掌握和团队合作精神对于独立学院学生将来进入社会十分重要,这也是衡量独立学院办学成功与否的一个方面。因此,独立学院的人才培养目标定位,既要达到本科生应具备的理论基础,又要有相对突出的专业技能,应培养“应用型本科”人才。因而,独立学院的数学课堂上应该多方面渗透数学模型的思想。

二、数学模型融入数学课堂教学的必要性

(一)人才培养创新的需要

根据独立学院人才培养目标和实际情况,有针对性的加大基础课和实践环节教学的'比重,侧重于实践能力的培养,在专业课程体系中适当增加实验、实践教学内容,加强与社会实体的联系。力求培养出具有实际操作能力的高素质大学生。数学建模是将一个实际问题,对其作出一些必要的简化与假设,将其转化成一个数学问题,借助数学工具和数学方法精确或近似地解决该问题,并用数学结果解释客观现象、回答实际问题并接受客观实际的检验。数学建模能弥补传统数学教学在实际应用方面的不足,促进数学教师在现代化教学手段、教学模式方面的更新。数学建模有助于调动学生的学习兴趣,在计算机应用能力、实践能力和创新意识的培养方面都有着非常大的作用,以便学生将来能更好地适应工作岗位。

(二)高校教学改革的需要

当今社会信息高度发达,竞争日益激烈,必须具备一定的创新意识和创新能力,否则很难适应社会信息时代的要求。传统的教学模式是以课堂理论讲授为主,学生绝大部分时间都集中学习书本知识,很少有机会接触社会,也难做到学以致用。绝大多数课程都是教师的一言堂,考试也是以教师讲课内容为主。学生忙于记录和背诵而闲置其聪慧的头脑。长期的灌输式教学导致学生明显缺乏学习的主动性,会听从而不会质疑,更不会形成开创性的观点,很难适应企事业单位动态的工作环境。数学作为一门传统基础学科,对独立学院的学生来说,学习上有一定的难度。我们的教学应以“必需,够用”为度。数学建模从形式到内容,都与毕业后工作时的条件非常相近,是一次非常好的锻炼,学生通过自主的学习,把实际的问题转化为数学理论解决,有助于学生创新能力的培养动手能力的提高,这也正是独立学院院校应用型本科人才培养的方向。

(三)学生参加数学建模竞赛的需要

独立学院学生思维活跃,且比较注重个人能力素质的提高。很多学生愿意在学校参加一些竞赛来提高自己。全国大学生数学建模竞赛尤其受学生重视,但仍有很多大学生不了解这类竞赛,因此,在数学课堂上引入数学建模思想,学生既了解了数学建模,又对数学公式提起了兴趣,还有助于独立学院学生在全国大学生数学建模竞赛中取得优异成绩。

三、结语

高等数学的作用表现在为各专业后续课程的学习提供必要的数学知识,培养各专业学生的数学思想与数学修养,全面提高大学生创新思维和应用能力。只有把数学建模思想融入数学教学中,才能调动学生学习数学的积极性,培养学生的创新能力,实现提高学生综合分析问题能力的最终目标。

数学建模论文模板 第8篇

数学建模是利用数学解决实际问题的方法,它几乎是一切应用科学的基础,数学实验是应用计算机技术和先进的数学软件来学习和应用数学。数学建模与数学实验着眼于培养学生数学知识应用能力与创新意识,激发学生学习数学的兴趣,强调对数学的体验与探索。加强实践教学,是当前大学数学教学改革的核心内容,将数学建模和数学实验融入到大学数学的教学中,必将推动大学数学课程教学内容和课程体系的改革。

1地方本科院校大学数学的教学现状

大学数学,是高等学校理工专业、财会专业最重要的基础课程之一,对于学生而言,大学数学内容多、难度大,挂科率高,是学生最为头疼的课程。当前,地方本科院校大学数学的教学存在着四个主要问题:(1)当前的教学是“重理论,轻实践”。现行大学数学的教材和教学内容非常稳定,教学改革时变化不大,依然按照定义、性质、定理、例题、习题的模式进行,最后考试;(2)绝大多数专业不开设“数学建模”和“数学实验”课程,学生不清楚学习数学有什么用,而且教学内容单一,与学生的專业的关联性很小,所以学生对大学数学缺乏兴趣;(3)大学数学课程课时少,内容多,教师在教学中只是赶进度教完所要求的内容,以“学生为主”的教学理念难以贯彻;(4)大学数学课程的教学并没有随着计算机技术的和数学建模而发生根本性改变。

2数学建模与数学实验

数学建模就是用数学的语言来刻画和描述一个实际问题,将它变成一个数学上得问题,然后经过数学的处理,并以计算机为工具,应用数学软件,得到定量的结果。对实际问题建立模型时,首先要识别问题,即了解问题的背景,分清问题的主要因素和次要因素,提出合理的假设;其次,利用相应的数学方法建立数学模型,并且借助数学软件求解模型;最后,将所得解与实际问题作比较,分析模型的实际意义。凡是要用数学来解决的实际问题,都是应用数学建模的思想和方法来解决的。随着计算机技术的飞速发展,给数学建模以极大的推动,人们越来越认识到数学和数学建模的重要性。

数学实验指学生在教师指导下用计算机和软件包学习数学和进行数学建模求解。具体而言就是利用计算机和数学软件为实验工具,以数学理论作为实验原理,以数学问题为等作为实验内容,以学生为主体进行仿真计算、归纳总结等探索活动。数学实验有着极重要的教育价值,数学实验课与传统的`课堂教学是不同的,它把“教师讲授一学生听练一测验考试”的过去的学习过程,变成“问题一猜想一实验一验证一创新”的学习过程,使数学教学从单纯的教师讲授、学生被动接受的模式发展到学生主动学习模式,这与当前的课程教学改革理念完全一致。在数学实验中,由于现代信息技术的应用,使学生摆脱了繁杂的、乏味的数学推算和数值计算,给学生创设了良好的实践环境。数学实验对突破课堂教学中的难点,培养学生的创造性思维、实践能力和辩证唯物主义观具有特殊作用。

3数学建模与数学实验融入大学数学课程的意义

数学建模与数学实验能培养学生应用数学的能力和创新能力

数学建模过程和数学实验是一个创造性的过程。学生在进行数学建模活动时,首先要了解问题的实际背景,要求学生有较强的文献搜索能力和自学能力;同时,学生不仅要了解数学学科知识和各种数学方法,还要求学生熟悉一种或几种数学软件,熟练地设计算法,编制程序解决当前实际问题,最后还要把完整的解决问题的过程和结果以科技论文的形式呈现出来。因此,数学建模和数学实验在培养学生的创新能力方面有着非常重要的作用。

数学建模与数学实验有利于提高学生对大学数学课程的理解程度和学习兴趣

数学建模强调人们认识和揭示客观现象规律的过程。因此,在数学课堂教学中融入数学建模,可以让学生体验发现问题、了解问题、构造模型、解决问题的过程,从而启迪学生应用数学的意识、兴趣和能力。数学实验从问题出发,侧重于培养学生用形和量的观念去观察和把握现象的能力,有助于学生抓住问题的本质和对抽象的数学概念的理解程度。

数学建模和数学实验有利于培养学生的自学能力

数学建模和数学实验是面向实际问题的学习方法,很多知识需要学生通过学生自学来掌握,这恰好是对学生自学能力的培养。

数学建模和数学实验有利于培养学生的科研能力

数学建模与数学实验活动本身就是科学研究的过程,学生从传统教学中的被动学习变为主动探索。数学建模和数学实验使学生较早地接触到科研实际,熟悉科研程序,极大地提高了学生的科研能力。

4将数学建模与数学实验融入到大学数学教学实践

数学建模和数学实验可以培养学生创造力、洞察力和想象力,在激发学生学习兴趣和学生学习的积极性方面都具有独特的作用。就地方本科院校大学数学教学的现状,如何让数学建模、数学实验和数学教学有机结合起来,在目前是最为关键的。

开设数学建模与数学实验选修课

开设数学建模与数学实验选修课,可以系统训练学生利用数学建模方法和数学实验方法解决生活中的实际问题。教师应以案例和问题为导向,展示数学解决问题的过程和计算机的应用。

将数学建模、数学实验与大学数学的教学有机结合起来

多数非数学专业,都要学习“高等数学”、“线性代数”、“概率论与数理统计”这几门课程。这几门课程都抽象难学,所以教学中在数学概念形成的过程中渗透数学建模的思想,在数学知识的应用中加以示范。在数学知识学习的过程中,用数学实验的方法让学生切身体验,将教材的结果通过数学实验来实现,这可以更进一步地激发学生的学习兴趣,让学生认识到数学的趣味。

开展数学建模竞赛活动

从1992年开始,国家每年举办一次全国大学生数学建模竞赛,数学建模竞赛可以让学生亲身体验数学,引发学生对实际问题研究的兴趣,受到了大学生的普遍欢迎。…数学建模竞赛是数学建模与数学实验结合的一项竞赛活动,将大学数学教学和数学建模竞赛结合起来,形成稳定的实践教育体系:对大一学生做数学建模讲座,让学生明白什么是数学建模;对大二和大三学生参加各种级别的数学建模竞赛,例如,全国大学生数学建模竞赛,“深圳杯”数学建模挑战赛,泰迪杯数据挖掘竞赛等;大四学生可以选择数学建模方面的毕业论文选题或毕业设计。

5数学建模与数学实验融入大学数学教学中应注意的问题

首先,数学建模和数学实验课程属于实践性课程,在讲授中贯彻少而精的原则,针对大学数学课程的主要概念和重要内容,切忌追求面面俱到,从而增加学生的负担。

其次,数学建模和数学实验融入到大学数学教学中,不是讲几个案例,做几次实验,把大学数学体系搞成一个大杂烩,”大学数学课程中融入数学建模和数学实验,根据章节内容选取相适应的案例,化整为零,适时融入,达到“随风潜入夜,润物细无声”的教学效果。

最后,数学建模与数学实验融入大学数学中要循序渐进,从一堂课、一个案例、一个数学实验开始,适度拓展,切忌改变大学数学本身完善的教学体系。

总之,数学建模和数学实验是大学数学教学改革的突破口,在大学数学的教学中融入数学建模与数学实验的思想和方法,有利于实现从“学数学理论”到“运用数学解决问题”的转变,从而达到培养应用型人才的目标。同时,这是一项长期且艰巨的任务,只有在教学实践中不断探索、总结,不断创新,才能提高大学数学教学质量。

数学建模论文模板 第9篇

●在数学建模论文评选中,一般会经历初审终审两个环节,其中初审环节主要是评委通过查看参赛学员的摘要来判定其能否进入终审环节,一般这个流程所需要的时间在5-10分钟;进入终审环节的论文是有很大概率可以拿奖的(例如美赛进入终审至少80%以上概率可以获奖),未进入终审的论文只能发放优秀奖。

●一篇好的摘要应结构清晰,逻辑严谨、内容丰富、语言简练。摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。规范的摘要是一篇论文的浓缩与精华,即使读者不阅读全文也能获得必要的基本信息,且便于文献检索机构对论文学术水平的评析,有利于论文的收录,增加论文被国际著名数据库检索的概率,使论文的学术价值得以体现。

●摘要千万能超过一页,一般是占到半页或2/3页即可。

抱歉,评论功能暂时关闭!