五年级上册数学小论文 第1篇
设计说明
《数学课程标准》明确指出:“借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。”本课时基于教材的编排意图和本节课的教学目标,在教学设计中尽量联系生活实际创设情境,使学生感受数学知识与实际生活的密切联系,采取半扶半放的方式让学生主动参与解决问题的过程。在问题解决的环节设计上,引导学生运用几何直观帮助分析数量关系,找出解决问题的思路和方法,同时也为后面理解分数乘法的意义和解决问题积累一定的方法和经验。
课前准备
教师准备PPT课件
学生准备习题卡片
教学过程
⊙复习旧知,引入新课
师:前面我们已经掌握了分数加减法的计算方法,下面大家来做几道题,看谁做得又快又好。
1、分数的基本性质是什么?怎样进行通分?
2、先计算,再说说分数加减混合运算的计算方法。
+-+
揭题:同学们对前面学过的知识掌握得很好,下面我们来看看乐乐留给我们的问题。(板书课题)
⊙讨论交流,探究新知
课件出示例3。
1、阅读与理解,明确题意。
师:同学们,你从这道题中获得了哪些信息?(生填写信息卡)
乐乐喝了次牛奶。
第一次:一杯纯牛奶,喝了()杯。
第二次:兑满热水,又喝了()杯。
问题:一共喝了多少杯纯牛奶?
2、分析题意,画图解决问题。
(1)找出解决问题的关键。
师:要想求乐乐一共喝了多少杯纯牛奶,就要知道什么?
生:要知道乐乐第一次和第二次分别喝了多少杯纯牛奶。
师:乐乐第一次喝了多少杯纯牛奶?能直接求出来吗?
生:能,一杯纯牛奶,乐乐喝了半杯,也就是喝了杯。
师:乐乐第二次喝了多少杯纯牛奶?能直接求出来吗?(不能)
师:同学们发现解决这道题的关键了吗?
生:发现了,关键就是求出乐乐第二次喝了多少杯纯牛奶。
(2)画图表示关键问题之间的关系。
①组织学生用自己喜欢的方式画图。
师:下面我们用画图的方法来找出解决这道题的关键,也就是表示出乐乐第二次喝了多少杯纯牛奶。
②画图理解并汇报。
第一次喝了杯纯牛奶。
加满水,水是杯,纯牛奶还是杯。
又喝了杯,这杯里,一半是纯牛奶,一半是水。
(画图提示:用一个长方形代表杯子,涂色部分代表纯牛奶或纯牛奶和水的混合物)
生1:第一次喝了杯纯牛奶,还剩杯纯牛奶。
生2:加满水,纯牛奶只有原来的杯。
生3:又喝了加满水后的,也就是把杯纯牛奶再平均分成2份,喝的纯牛奶就是其中的1份。
师:把平均分成2份,可以把化成,其中的1份就是。第二次喝的纯牛奶是杯,水是杯。
(3)解决问题。
师:知道了乐乐第二次喝了多少杯纯牛奶,那么两次一共喝了多少杯纯牛奶?(指名回答,教师板书)
第一次喝(杯)+第二次喝(杯)=两次一共喝(杯)
杯+杯=?
杯+杯=杯
师:乐乐一共喝了多少杯水?
生:乐乐第二次喝的纯牛奶是杯,水也是-=(杯)。
3、回顾反思,明确解题方法。
师:解决这道题的关键是什么?关键步骤应用了什么知识?
生:关键是求出乐乐第二次喝了多少杯纯牛奶;关键步骤应用了分数的基本性质。
设计意图:精心设计问题,由浅入深,引导学生层层剖析,自主找到解决问题的关键,给学生足够的合作交流的时间和空间,让学生充分经历探究的过程,使学生真正成为学习的主人,通过引导学生画图,直观地理解和呈现解决问题的方法。
⊙巩固练习,拓展提高
1、东东有一瓶水,上午喝了一半,加满了水,下午又喝了一半。东东一共喝了多少瓶水?
2、小明的半瓶墨水用了一半,还剩多少?
⊙课堂总结
通过这节课的学习,你有什么收获?
⊙布置作业
教材100页3、4题。
板书设计
解决问题
第一次喝(杯)+第二次喝(杯)=两次一共喝(杯)
杯+杯=?
杯+杯=杯。
五年级上册数学小论文 第2篇
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。
记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以,也就是35乘以(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35乘以(元),40乘以(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28/628≈,32/650≈0。049,;,所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。
记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4-X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!
五年级上册数学小论文 第3篇
今天下午,我和妈妈来到了人山人海、物品琳琅满目的胖发祥超市,首先映入眼帘的是**小小的柜台,其中一个柜台上面用一根小棍子撑起一张大黄幅,上面写着黄金打八五折,进入生活区,里面的打折商品更是不计其数,什么洗衣粉打七五折了呀,小点心降价了呀,“呀!土豆”买四送一了呀!
我顿时对这些打折物品起了浓厚的好奇心,“呀!土豆”是打几折呢?洗衣粉的现价是多少元呢?我便请教妈妈,妈妈笑眯眯的对我说:“你可以用你学过的知识来解决呀!”
我恍然大悟,我不是刚学了打折扣嘛!便认真思考了起来,现价=原价×折扣数,洗衣粉的原价是14元,现价就应该用14×70%=9。8元,根据上面的原理,就是用买四包“呀!土豆”的钱买了五包,用 4+1=5包,4÷5=80%,也就是打八折,我很自豪的对妈妈说出我的解题思路,妈妈直夸我是个爱动脑筋的孩子。
五年级上册数学小论文 第4篇
在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?在数学活动组里,我就遇到了这样一道实际生活中的问题:某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖 10000元 1名,一等奖1000元 2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?面对问题我们并不能一目了然。于是我们首先作了一个随机调查。把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?在实际问题中,甲商厚每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客。二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共 14000元(10000+ 2000+ 1000+1000=14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为 280000元( 14000 ÷ 5%=280000)。所以由此可得:(l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多。(2)当两商厦的营业额都不足 280000元时,乙商厦的优惠则小于 14000元,所以这时甲商厦提供的优惠仍是 14000元,优惠较大。(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。像这样的问题,我们在日常生活中随处可见。例如,有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同。为了争取更多的用户,两站分别推出优惠政策。甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年。你作为用户,应该选哪家好?这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩。买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。作为跨世纪的学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地适应社会的发展和需要。
今天下午,老师照例发了一张试卷。其中有一道很难的题,我想了半天也没想出个所以然,这道题是这样的: 有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。 我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊! 正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条 棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。 最后,我得到了结果,为374立方厘米。我的算式是:209=11×1919=2+1711×2×17=374(立方厘米) 后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。 解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。
节约用电保护环境搬到新房子以后,妈妈说:“家里的开销真大啊,每个月水电煤气还有物业费、电梯费要不少钱呢,要节约一点了,还是先去开通分时电表吧!”六个月以后,供电公司的电费账单来了。我问妈妈:“你开通的分时电表真的节约钱了吗?”妈妈说:“你自己去研究一下吧。”我打开账单一看,2009年1月到6月,我们家一共用了2724度电,其中峰时用电量是2060千瓦时,谷时用电量是664千瓦时,峰谷用电量比例是75:25。到底节约了多少钱呢?我拿出笔来一算,如果没有分时电表,我们家应该支付1439元,开通后,只要支付1388元。“妈妈,我们节约了51元钱。”我对着在厨房做饭的妈妈喊道。妈妈从厨房探出头来,说:“分时电表确实节约了,不过,我们还要想想别的节电的方法。你和爸爸也出出主意。”爸爸说:“空调可以把温度调到26度,房间的门窗关严实了,可以节约不少电。”妈妈点点头说:“我记得有首儿歌‘高档启动低档转,慢慢转着就省电,风由凉处吹热处,蒸蒸暑气不愁散。’”我说:“妈妈说得真好,我老是不节约用电,以后我看完电视就及时关掉,上完卫生间一定记着关灯了。”正说着,家里的洗衣机嘟嘟嘟地提醒已经洗好了,我脑袋里灵光一闪:“洗衣机也可以晚上九点以后再洗啊!”妈妈笑着点点头:“确实是个好主意!”我高兴地对妈妈说:“节约了电费,我们就可以买别的好东西了。”妈妈说:“节约电费不仅为家里省了钱,更重要的是节约一度电等于节约4升水等于节约千克煤,等于减少排放千克二氧化碳呢!”我恍然大悟,原来节约用电就是节约能源,就是在保护我们生活的地球啊。我一定要节约用电。
应该是有几种方法 为什么 做完这题后的感受是什么(要联系生活) 这样才是生活数学小论文!
五年级上册数学小论文 第5篇
我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天沉浸在运算和公式中。
有人特地选定这一天的晚间登门拜访,寒暄之后,说明来意:“听您夫人说,今天是您六十大寿,特来表示祝贺。” 吴文俊仿佛听了一则**,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住?
其实,吴文俊对日期的记忆力是很强的。他在将近花甲之年的时候,攻克了一个难题——机器证明。这是为了改变数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。
五年级上册数学小论文 第6篇
在生活中,有许多的数学问题。也许是图形的分类,可能是解方程,或许是小数知识和应用题。在这里我给大家主要讲一下小数吧。
在一个周末,我妈妈带我去公司玩。我兴高采烈地和她一起去了公司。在路上我看见了一些小数,例如:加油站的油7。84/升,九毛九长寿面60。99元。街上的衣服15。5一件 妈妈问我说:你把上学期学的小数说一下。 我点点头。
到了公司,我不慌不忙的打开电脑,妈妈说: 先别急,你先把小数题做一下。 我的脸上充满了苦笑。啊!我从来把小数不看作一回事的。结果我一做,咦?好简单呀!我一口气把它做完了。妈妈说: 做的不错,可我要检查一下。 我下面的任务当然是去玩电脑了。不一会儿,妈妈走了出来,说粗心了吧?有错题的哦。我好郁闷呀,我细看了看,原来是粗心时把得数写错了。我不好意思的低下头,妈妈问我,知道小数的意义吗?我说知道,小数是由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,所以古人就发明了小数来补充整数。小数是十进制分数的一种特殊表现形式。妈妈说,不错,记住以后不要粗心喽。我说好,我一定会加油的。
在生活中一定有许多数学问题,只要我们细细观察,只有你想不到的,没有你做到的。
五年级上册数学小论文 第7篇
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。
五年级上册数学小论文 第8篇
暑假的一天清晨,我和妈妈正在吃早餐,忽然发现早饭的配菜全部吃完了,于是我就建议妈妈一起去超市购买一些榨菜之类的配菜。
到了超市之后,我开始选购我想要的配菜,妈妈交了一个任务给我,就是让我自己带着零花钱去挑选并且完成结账。
我仔细观察了我所挑选的配菜价格,其中榨菜的价格是每包元,我准备买3包,于是,我心里默默地算起了账,由于带小数点的乘法还没有学过,我就想把小数点去掉之后再用乘法15×3来计算,把最终得出的45再加一个小数点,得出了元的结果。
我来到了收银柜台,从零钱包里拿出了5元钱给收银员,收银员找给了我元。我心里又默默的核对了一下找零元,看来,收银员没有找错。
我心满意足的拿着三包榨菜跟妈妈回家了。