生物系毕业论文 第1篇
摘 要:生物科学是二十一世纪最有发展前景的学科之一,它作为自然科学领域的带头学科,将会有极大的发展空间;而且人类社会在新世纪面临的人口、粮食、资源、环境和健康问题将更加突出,而这些问题的解决,都将在很大程度上依赖于生物科学的进步。所以作为新世纪的高中学生,学好生物这门学科就显得非常重要。当前有关创新精神和实践能力的培养的问题引起了教育界和全社会的广泛关注,如何在生物教学中实施成为当前的要务,而研究性学习顺应了这一历史的客观要求。现存的生物学教学方式具有一定的局限性,以研究性学习的方式建立生物学知识框架具有独特的优势。积极创新情境,让学生体验科学探究过程,学习科学探究的方法,养成科学探究的能力,是生物教学的重要任务之一。因此本文就此问题结合自己九年的生物课堂教学实践谈几点看法。
关键词:研究性学习生物教学 必要性 把握 注意事项
一、在高中生物教学中贯穿研究性学习的必要性
1、新一轮课程改革倡导学生开展自主学习、探究学习、合作学习,倡导建立积极的价值观,倡导“参与式”教学理念,在教学过程中渗透学生的创新精神和创造能力的培养,这些教育改革的新观念已引起了教育界和全社会的广泛关注,并成为当前基础教育改革的一个热点。研究性学习是由学生在一定的生活情境中发现问题,选取专题、设计研究方案,通过主动的探索和研究而求得问题的解决,从而了解和体验科学探索的过程,养成自主探究。
2、向高中学生传授科学研究的知识和方法,并在活动课程或课外活动中开展一些课题研究活动,是培养创新意识和实践能力的一个重要方面,因而研究性学习顺应了这一历史的客观要求。
二、生物教学中研究性学习的初步实践
1、贴近生活,引入课题,进行推测,提出假设
本教学设计从教师有目的的给出材料――日常生活中的淀粉消化的速度与生产过程中淀粉水解速度比较――直接切入课题,引起学生兴趣的同时,提出问题,引发学生思考――生物体内的催化剂――酶的特点。
材料:人每天都需要吃饭,人体消化的速度相当快。人体内每小时可以水解500吨淀粉,相同质量的淀粉,在有足够的酸作为催化剂的条件下,全部水解需要十几天。
这个事实说明了什么问题?
学生回答:酶的催化作用具有高效性。
教师引导:酶是生物催化剂,它和无机催化剂相比,可能具有高效性的特点。怎样才能知道酶具有高效性呢?
2、点拨启发,设计方案,实验探索
教师引导:我们在无机化学当中学过催化剂,怎样能确定哪种催化剂的效率更高呢?
学生讨论得出结论:比较相同化学反应在不同的催化剂的催化作用下,通过化学反应速度可以确定催化剂的催化效率――化学反应速度越快的,催化剂的效率越高;反之,催化效率越低。
教师引导:化学反应速度怎样才能确定呢?
学生思考回答:通过反应物的消耗速度或者产物的生成速度比较可以看出来。
材料:过氧化氢(H2O2)在 Fe3+的催化下,也可分解成H2O和O2,动物新鲜肝脏中含有的过氧化氢酶也能催化这个反应。据测算,每滴氯化铁中的Fe3+数,大约是肝脏研磨液中过氧化氢分子数的25万倍。从数目上看,一滴含有催化剂的容液中,Fe3+数远远大于过氧化氢酶的分子数。
如果现在我们想弄清楚Fe3+与过氧化氢酶,哪一种催化剂的催化效率高,那么,我们应该如何设计这个实验?
问题引发了学生的热烈讨论。面对学生的争论、教师不急于点评。先让学生相互点评,最后经教师分析比较,最终筛选出下列设计方案对猜想进行探究――分组实验。
实验设计引导:要比较Fe3+和过氧化氢酶的催化效率,设计实验中的其他条件应该相同,如两个试管中过氧化氢溶液的量应该相同,Fe3+和动物肝脏也应尽可能同时加入两个试管中。然后通过产物――O2的产生速度,即气泡的产生量、带火星的木条的复燃速度,或者试管温度的变化――最终确定酶与无机催化剂效率高低。
教师在引导过程中,要注重等量性原则,科学性原则,可操作性原则,单一变量原则等实验设计原则的渗透。
学生按实验设计步骤分组实验。并思考问题:1.你在实验过程中观察到哪些实验现象?2.通过这个实验你可以得出什么结论?
通过以上的引导,从提问、引导猜想,设计实验进行探究,环环相扣,有的放矢,学生的求知欲望冉冉升起,为下一步探索研究作了良好的铺垫。既能让学生进行自主学习,又在实验的设计过程中,培养学生的创新精神,提高学生的科学素养。
3、实践拓展,深化认识
通过实验探究得出结论,酶的一个特性――高效性。
给出生产实践资料,学生在分析中,深化学生认识,加强学生科学就在身边的探究思想。
资料:人们在生产实践中就是利用了酶的这个特性,比如说在污染物的处理上,废旧塑料的大批量降解利用的就是相关的酶,塑料自然降解需要上百年的时间,甚至需要更长时间,而利用专用酶处理相等量的塑料几天内就可以完成。
三、在实施过程中的注意事项
1、研究性学习应该面向全体学生。离开了全体学生这个层面,研究性学习就完全背离了它的初衷。所以,要让研究性学习避免“贵族化”,走向“平民化”,就得重研究过程,而淡化研究成果。如果成果不期而遇,自然是个惊喜,但不出成果,只要“学会了研究”,也是极大的收获。
四、研究性学习的意义
通过教学中的教学方式的转变,惊喜地发现,无论是对老师的教还是对学生的学,都有很大的促进作用。首先,研究性学习从根本上改变了过去那种传统的教学模式,变老师讲学生听为真正学生自己学、自己发现问题、自己想办法解决。充分激发了学生的热情,体现了学生的主体性、主动性,在一定程度上培养了学生掌握、运用、分析信息材料的能力,开拓了学生的眼界和思维 能力,学到了许多课本上没有学到的知识,大大丰富了学生的思维方法,形成了一系列良好的思维品质。第二,研究性学习给我们的教学方式及老师提出了更新的挑战。研究性学习让我们的学生大胆探索,充分发挥学生的主体性、主动性,学生人多,思维不受限制,老师的引导如何发挥作用,这就给我们老师的教学方式提出了新的要求,因此,随着涉及的面越来越广,这就要求教师必须加强学习,不断拓宽自己的知识面。
有动力就有进步,研究性学习对推动教学改革有着极大的促进作用,实质上,它将带来教法和学法一次新的革命。
总之,学好生物科学是相当重要的。倘若就我们的学习喻作航船,勤奋则是轮船的马达;正确的学习方法便是轮船的方向盘与航线,让我们驾上这艘希翼之船在知识的海洋中圆游,让船儿载着我们驶向美好吧!
生物系毕业论文 第2篇
生物医学工程专业毕业论文开题报告
一、选题背景
二、研究目的和意义
我们日常生活中所接触到的心脑血管疾病中,90%以上都是由于动脉硬化引起的。特别是冠心病、心脏病、脑梗塞、脑栓塞等疾病,都是由于长时间的动脉硬化造成心脑血管硬化、闭塞、管腔狭窄等引起的。所以动脉硬化和心脑血管疾病有直接关系。动脉硬化是众多心脑血管疾病发生和发展的生理和病理基础,是引起心脑血管疾病的主要原因。如果我们能够降低动脉硬化的发病率,则心脑血管疾病的发病率也会大大降低。
三、本文研究涉及的主要理论
用于动脉硬化检测的有创方法主要指动脉造影术。目前,临床应用最广泛的是冠状动脉造影技术,它是一种常见的和有效的用来诊断冠状动脉粥样硬化性心脏病(冠心病)的方法,是一种较为安全可靠的侵入性诊断技术,是诊断冠心病的“金标准”。然而,由于动脉造影属于侵入性操作,对技术和设备的条件要求较高,且检查价格十分昂贵,会对病人身体造成损伤,这些不足之处在很大程度上限制了该技术的广泛应用。更重要的是,有创动脉造影技术只对已经有了明显的管腔狭窄的动脉病变有效,对此类疾病的早期蹄查和诊断帮助较小,所以,只依靠动脉造影是不足以有效提高动脉硬化性疾病的早期防治水平的。
用于动脉硬化检测的间接方法主要指通过血糖、血脂等生化指标或生物标记物,如微量白蛋白尿、C反应蛋白等或通过内皮功能测定来间接判断动脉硬化程度,反映血管的病变情况[6]。但上述生化指标水平与动脉硬化的病变过程并非总是同行的,并不能直接反映动脉的弹性特性。而内皮功能测定等方法尚缺乏足够的前瞻性研究结果的支持。
通过直观的影像学手段通过使用超声成像、CT扫描、核磁共振成像等影像学手段,可以检测某个动脉的管壁内中膜厚度情况、粥样斑块形成情况和冠状动脉韩化积分情况等,从而在一定程度上反映动脉硬化程度。通过影像学手段可以较为可靠地确诊动脉硬化性疾病,不足之处是难以发现早期病变,只有在病变程度较深的时候才能确诊,且这些影像诊断方法只能对某一局部血管进行分析,了解某一截面动脉管腔的弹性功能变化,不能详细了解动脉整体的弹性功能。另外,上述方法均需要借助很强的专业知识和昂贵的检测仪器才能进行。通过分析人体各生理参数人体的生理参数包含了人体大量的生理和病理信息,通过对人体生理参数进行分析,可以得出表征动脉硬化程度的特征参数,这其中主要指人体血压信息、心率信息、心电信息、脉搏信息等。目前应用最广泛的表征动脉硬化的特征参数主要有脉搏波传导速度和錁胺指数[7]:A.脉搏波传导速度(pulse wave velocity,PWV)心脏将血液搏动性地射入主动脉,主动脉壁产生脉搏压力波,脉搏波以一定的速度沿血管壁向外周血管传导。通过测量两个动脉记录部位之间的脉搏波传导时间和距离,就可以计算出脉搏波传导速度。无创测定脉搏波传导速度需要选择两个动脉搏动点,该点要在体表能够触摸至IJ,通过测量这两个点之间的等效距离,再除以这两个点之间脉搏波的传导时间,即得脉搏波传导速度。例如,选择胺动脉和騍部动脉可以测定臂踝PWV(baPWV)、选择颈动脉和股动脉可以测定颈股动脉PWV (cfPWV)、选择颈动脉和烧动脉可以测定臂PWV (crPWV)、选择颈动脉和胺动脉可以测定上臂PWV (cbPWV)等[8]0脉搏波传导速度的测定在较长的时间内都被广泛用来评价动脉壁的扩张性和硬度等。脉搏波传导速度取决于血管的几何特征、动脉壁的弹性、、血液密度等,由于血管几何特征和血液密度的变化相对较小,因此,脉搏波传导速度能够反映动脉壁的弹性情况。目前的测定脉搏波传导速度的检测仪价格昂贵,且检测指标单一,误差不易控制。B.踝胀指数(Ankle brachial index,ABI)测量踝胺指数是血管外科最常用和最简单的一种检查方法,通过测量踝部腔前动脉或腔后动脉以及胺动脉的收缩压,得到躁部动脉压与胞动脉压之间的比值,即为課胺指数。踝胺指数可以用来评估下肢动脉血管的开放情况。
四、本文研究的主要内容及研究框架
(一)本文研究的主要内容
本文对人体生理参数的发生机理进行了全面研究,确立了表征动脉硬化的特征参数的计算方法,搭建软硬件平台,建立人体多生理参数的采集及分析系统,实现对人体生理参数的检测和对动脉硬化特征参数的计算,并对计算结果做出分析。本文的安排如下:
第一章介绍了本课题的研究背景及意义,简要介绍了国内外研究现状,并对本研究的主要内容进行了总结。
第二章介绍了动脉硬化的基础理论,从人体动脉系统、动脉硬化形成机制、病理过程、不同类型、临床表现及影响因素六方面进行阐述。
第三章介绍了人体各生理参数(血压、心电、脉搏)的发生机理及意义,分析了表征动脉硬化的特征参数,主要包括基于血压参数计算的脉压、基于心电波和脉搏波计算的脉搏波传导速度和基于脉搏波形分析的其他心血管参数如动脉顺应性、外周阻力等参数,并且给出了这些参数的详细算法及流程。
第四章介绍了系统软硬件平台的设计及实现过程,主要包括信号的采集、实时显示及信号的传输和分析过程。
第五章给出了动脉硬化参数的检测过程及结果,并做出分析。第六章对全文做出总结,提出展望。
(二)本文研究框架
五、写作提纲
六、本文研究进展(略)
七、参考文献
[1]Bayod C, Villarroel M T, Perez Lorenz J B, et al. Arteriosclerosis. Factores de [J]. Medicine - Programa de Formacion Medica Continuada Acreditado, 2013,11(40):2383-2395.
[2]马国强.人体生理信号预处理算法研究[D].济南:山东大学,2012.
[3]顾东风.心血管病预防的现状和展望[J].中华预防医学杂志,,37(2):75-76.
[4]俞文,张敏,凌杰等.163例心脑血管疾病知识、态度、行为综合干预分析[J].疾病监测与控制,2012,6(12):737-739.
[5]李维胜.心血管参数检测系统软件设计与实现[D].山东大学,2009.
[6]曹帅,陈香.便携式动脉硬化评估仪[J].中国医疗器械杂志,,(1):6-10.
[7]朱彤,李婉媚.PWV和ABI的测定在动脉硬化早期检测中的应用[J].临床医学工程,2006,(8):4-5.
[8]P H. Tsui, et al. Arterial Pulse Waveform Analysis by The Probability Distribution ofAmplitude[JJ, Physiological Measurement, 2007, 28(8): 803-812.
[9]QuiIlien A, Moore J C, Shin M,et al. Distinct Notch signaling outputs pattern the developingarterial system[J]. Development, 2014,141(7):1544-1552.
[10]赵水平,谢琼.动脉粥样硬化发病机制新认识与临床实践[J].中华心血管病杂志,,8(1):2-4.
生物系毕业论文 第3篇
研究表明,PLC发生有单中心及多中心,且与个体的基因缺陷有关。多基因、多阶段的癌基因或抑癌基因变构为PLC发生、发展的分子基础[21]。PLC的基因治疗是在基因调节水平上进行操作以杀伤或抑制肿瘤细胞的治疗方法。随着DNA 重组技术和转基因方法的不断完善,基因治疗的研究获得了迅猛发展。
抑癌基因 治疗
抑癌基因治疗是将具有正常功能的野生型抑癌基因(如 p53、p66等)通过各种途径转染至肿瘤细胞中,重建失活的抑癌基因功能,恢复细胞的正常生长表型,或者诱导细胞凋亡,从而达到控制肿瘤细胞生长的目的。p53基因是目前研究和应用得最多的一个,不仅可抑制癌细胞生长,还可诱导其凋亡;p16基因能阻抑细胞生长,但不诱发凋亡。p53反义核酸或向细胞内导入 wt-p53的基因治疗,可以抑制肿瘤的增殖,诱导凋亡,提高对药物的敏感性[22]。Okimoto等[23]将带有野生型p53基因的腺病毒载体Adomv p53通过肝动脉注入小鼠RCN-9结肠癌细胞肝转移模型,48 h后,经腹腔注射顺铂(CDDP),发现转移的PLC细胞广泛凋亡而肝脏功能并未受损。
自杀基因治疗
自杀基因疗法又被称为“病毒介导的酶/前体药物治疗(virus-directed enzyme/prodrug therapy,VDEPT)。原理是把某些病毒、细菌中特有的转换酶基因——自杀基因导入体内后,利用其产生的酶将无毒或低毒的药物前体转成细胞毒性代谢产物,从而杀死肿瘤细胞的基因治疗方法。目前,用于PLC基因治疗的自杀基因系统有单纯疱疹病毒胸腺嘧啶激酶(HSV2TK)基因/无环鸟苷(GVC)系统、胞嘧啶脱氨酶(CD)基因/5-氟胞嘧啶(5-FC)系统和嘌呤核苷酸磷酸酶(PNP)基因/氟达拉滨系统等。Harada等[24]以EB病毒基因组成的质粒载体与非病毒载体PAAD结合成杂交载体介导HSV-TK/GCV系统,能有效治疗实验小鼠PLC。
免疫基因治疗
免疫基因治疗通过基因重组技术增强机体的抗肿瘤免疫功能而达到治疗肿瘤的目的。免疫基因治疗可分为2类: 一种是将细胞因子基因导入PLC细胞,通过增强肿瘤细胞表面肿瘤抗原性、MHC 分子或黏附分子的表达而提高免疫原性;另一种是将细胞因子基因导入免疫活性细胞,如LAK细胞和树突状细胞等,通过直接刺激免疫效应细胞而达到增强免疫反应、抑制肿瘤生长的目的。目前,常用的细胞因子有IL-2、IL-12、IL-18、TNFα、IFN和集落刺激因子等。IL-12是作用较显著的细胞因子之一。Harada等[25]研究发现以IL-12基因治疗免疫抑制状态下的鼠PLC模型,可明显增加肿瘤细胞周围淋巴细胞的浸润并增强肿瘤特异性杀伤细胞的反应;IL-12可显著抑制肿瘤的复发。其他免疫基因治疗还包括IL-12和IL-2联合转染、IL-12和TNF、GM2CSF和IL-2 联合应用等。
反义基因治疗
PLC的发生、 发展 过程中许多癌基因及生长因子的基因产物大量表达,运用反义技术可以抑制这些产物的过度表达,从而抑制肿瘤的生长。根据PLC发病原因,导入反义寡核苷酸封闭PLC基因的表达或用正常抑癌基因取代突变抑癌基因。已报道设计针对VEGF、端粒末端转移酶、c-myc等癌基因的表达途径,诱导PLC细胞凋亡抑制其生长[26]。反义技术的主要缺点是目的基因的靶向性欠佳和半衰期较短,目前一般作为手术和化疗的辅助治疗方法。
联合基因疗法
PLC的发生涉及到多基因参与,因此单用一种基因治疗效果有限。不同的基因治疗策略联合应用可相互协同,增强抗肿瘤效果常采用免疫基因和自杀基因的联合治疗。Drozdz等[27]联合HSV-TK和IL-12治疗效果都明显优于单个基因治疗。
尽管目前有多种细胞因子、抑癌基因等可用于肿瘤的基因治疗,但总体来讲,效果尚不理想,因而寻找更多更具杀伤力的基因将大大推动基因治疗的研究和应用范围。基因治疗尚存在诸多理论上和技术上的问题,如靶向性、基因载体的转移效率、导入基因的持续表达、基因治疗的安全性等问题,还有待进一步完善[28]。
生物系毕业论文 第4篇
摘要 生物芯片是便携式生物化学 分析 器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。采用生物芯片可进行生命 科学 和医学中所涉及的各种生物化学反应,从而达到对基因、抗原和活体细胞等进行测试分析的目的。生物芯片 发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。本文阐述了生物芯片技术在加工制备、功能和 应用 方面的近期 研究 进展。
关键词:生物芯片,缩微芯片实验室,疾病诊断,基因表达
人类基因组计划的目标是在2005年完成对30亿个人体基因组DNA碱基的序列测定,现在通过使用更高级的毛细管阵列测序仪和商业操作,使该计划有望提前完成。因此,人们现已开始利用人类基因组计划中所发现的已知基因对其功能进行研究,亦即把已知基因的序列与功能联系在一起的功能基因组学研究。另外,与疾病相关的研究已从研究疾病的起因向探索发病机理方面转移,并从疾病诊断向疾病易感性研究转移。由于所有上述这些研究都与DNA结构、病理和生理等因素密切相关,因此许多国家现已开始考虑在后基因组时期,研究人员是否能用有效的硬体技术来对如此庞大的DNA信息以及蛋白质信息加以利用。为此,先后已有多种解决方案问世,如DNA的质谱分析法[1]、荧光单分子分析法[2]、阵列式毛细管电泳[3]、杂交分析[4]等。但到 目前 为止,在对DNA和蛋白质进行分析的各种技术中,发展最快和应用前景最好看的技术当数以生物芯片技术为基础的亲和结合分析、毛细管电泳分析法[5]和质谱分析法。此外,在此基础上,通过与采用生物芯片技术和样品制备 方法 (芯片细胞分离技术[6]和生化反应方法(如芯片免疫分析[7]和芯片核酸扩增[8])相结合,许多研究机构和 工业 界都已开始构建所谓的缩微芯片实验室。建立缩微芯片实验室的最终目的是将生命科学研究中的许多不连续的分析过程,如样品制备,化学反应和分离检测等,通过采用象集成电路制作过程中的半导体光刻加工那样的缩微技术,将其移植到芯片中并使其连续化和微型化。这些当年将数间房屋大小的分离元件 计算 机缩微成现在只有书本大小的笔记本式计算机有异曲同工之效。用这些生物芯片所制作的具有不同用途的生化分析仪具有下述一些主要优点,即分析全过程自动化、生产成本低、防污染(芯片系一次性使用)、分析速度可获得成千上万倍的提高、同时,所需样品及化学药品的量可获得成百上千倍的减少、极高的多样品处理能力、仪器体积小、重量轻、便于携带。这类仪器的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。因此,它已广为各国学术界和工业界所瞩目[9]。
1 、生物芯片的微加工制备
生物芯片的加工借用的是微 电子 工业和其他加工工业中比较成熟的一些微细加工(microfabrication)工艺(如:光学掩模光刻技术、反应离子刻蚀、微注入模塑和聚合膜浇注法),在玻璃、塑料、硅片等基底材料上加工出用于生物样品分离、反应的微米尺寸的微结构,如过滤器、反应室、微泵、微阀门等微结构。然后在微结构上施加必要的表面化学处理,再在微结构上进行所需的生物化学反应和分析。
生物芯片中目前发展最快的要算亲和结合芯片(包括DNA和蛋白质微阵列芯片)。它的加工除了用到一些微加工工艺以外,还需要使用机器人技术。现在有四种比较典型的亲和结合芯片加工方法。一种是Affymetrix公司开发出的光学光刻法与光化学合成法相结合的光引导原位合成法[10]。第二种方法是Incyte pharmaceutical公司所采用的化学喷射法,它的原理是将事先合成好的寡核苷酸探针喷射到芯片上指定的位置来制作DNA芯片的。第三种是斯坦福大学所使用的接触式点涂法。该方法的实现是通过使用高速精密机械手所带的移液头与玻璃芯片表面接触而将探针定位点滴到芯片上的[11]。第四种方法是通过使用四支分别装有A、T、G、C核苷的压电喷头在芯片上作原位DNA探针合成的[12]。
2、 生物芯片举例
生物芯片是缩小了的生物化学分析器,通过芯片上微加工获得的微米结构和生物化学处理结合,便可将成千上万个与生命相关的信息集成在一块厘米见方的芯片上。采用芯片可进行生命科学和医学中所涉及的各种生物化学反应,以达到对基因、抗原和活体细胞等进行测试分析的目的。通过分析可得到大量具有生物学、医学意义的信息。生物化学反应和分析过程通常包括三个步骤:
1、样品制备;
2、生物化学反应;
3、检测和数据分析处理。将其中一个步骤或几个步骤微型化集成到一块芯片上就能获得具有特殊功能的生物芯片,例如用于样品制备的细胞过滤器芯片和介电电泳芯片、用于基因突变检测和基因表达的DNA微阵列芯片和用于药物筛选的高通量微米反应池芯片等。现在,世界各国的科学家们正致力于将生化分析的全过程通过不同芯片的使用最后达到全部功能的集成,以实现所谓的微型全分析系统或缩微芯片实验室。使用缩微芯片实验室,人们可以在一个封闭的系统内以很短的时间完成从原始样品到获取所需分析结果的全套操作。
样品制备芯片
针对DNA分析,其制备过程通常要经过细胞分离、破胞、脱蛋白等多方面的工作,最后得到纯度足够高的待检DNA。目前在细胞分离方法上较突出的有过滤分离(根据生物颗粒的尺寸差异进行分离)和介电电泳分离(利用在芯片上所施加的高频非均匀电场使不同的细胞内诱导出偶电极,导致细胞受不同的介电力作用,而从样品中分离出来)等;芯片中的破胞方法有芯片升温破胞、变压脉冲破胞,以及化学破胞等。在捕获DNA方面,CephEid公司应用湿法蚀刻和反应离子蚀刻/等离子蚀刻等工艺在硅片上加工出含有5000个高200微米直径20微米的具有细柱式结构的DNA萃取芯片,专门用于DNA的萃取[13]。
生物化学反应芯片
由于目前所用检测仪器的灵敏度还不够高,因此从样品中提取的DNA在标记和应用前仍需用PCR这样的扩增复制技术复制几十万乃至上百万个相同的DN段。
目前,在芯片中进行核酸扩增反应获得成功的有宾夕法尼亚大学研究小组[8,14],美国劳伦斯-利物摩国家实验室[15]和Perkin-Elmer公司[16]。宾夕法尼亚大学研究小组所做的扩增反应都是在硅-玻璃芯片中进行的,芯片的外部加热和冷却采用的是计算机控制的帕尔帖电-热器。在对芯片表面进行惰性处理后,亦即在硅片表面生长一层2000埃的氧化硅之后,他们成功地在硅-玻璃芯片中完成了一系列不同的核酸扩增反应,例如RT-PCR、LCR、多重PCR和DOP-PCR。由劳伦斯-利物摩国家实验室加工的硅芯片所采用的加热方式是芯片内置的薄膜多晶硅加热套,其升降温的速度很快。Perkin-Elmer公司的PCR反应则是在塑料芯片上完成的。伦敦帝国理工大学的研究者研制了一种样品可在不同温度的恒温区间内连续流动的PCR芯片[17]。上述所有工作都是用事先提纯了的DNA或RNA作为扩增反应的底物来完成的。为了将样品制备和扩增反应集成为一体,宾夕法尼亚大学研究小组最近成功地在坝式微过滤芯片中直接对分离所得的人白细胞通过升温方式胞解后所释放的DNA进行了扩增,这是世界上首例将样品制备和扩增反应集成为一体的研究成果[14]。
检测芯片
毛细管电泳芯片
芯片毛细管电泳是1983年由杜邦公司的Pace开发出来的[18]。随后,瑞士的Ciba-GEIgy公司和加拿大的Alberta大学合作利用玻璃芯片毛细管电泳完成了对寡核苷酸的分离[19]。首次用芯片毛阵列电泳检测DNA突变和对DNA进行测序的是由加利福尼亚大学伯格利分校Mathies领导的研究小组完成的[20,21]。通过在芯片上加上高压直流电,他们在近两分钟的时间内便完成了从118bp到1353bp的许多DN段的快速分离。此外,Mathies的小组与劳伦斯-利物摩国家实验室Nothrup的研究小组合作,报道了首例将核酸扩增反应与芯片毛细管电泳集成为一体所作的多重PCR检测工作[22]。宾夕法尼亚大学Wilding的小组与Ramsey的小组一道用芯片毛细管电泳对芯片中扩增得到的用于杜鑫-贝克肌萎缩诊断的多条DN段进行分离也获得了成功[14]。其他用 芯片毛细管电泳检测突变的外国公司和学术机构有Perkin-Elmer公司、Caliper technologies公司、Aclara biosciences公司和麻省理工等。
DNA突变检测芯片
dNA之所以能进行杂交是因为核苷A和T、G和C可同时以氢键结合互补成对。许多经典的分子生物学方法如桑格DNA测序法和PCR等都是以此为基础的。最近出现的几项技术,如用光刻掩膜技术作光引导原位DNA合成[23]、电子杂交技术[24]、高灵敏度激光扫描荧光检测技术[25]等,使以杂交为基础的应用有了长足的改善。最近的一些 英文 权威刊物对应用芯片杂交技术检测突变作了报道。Hacia等人采用由96000个寡核苷酸探针所组成的杂交芯片,完成了对遗传性乳腺癌和卵巢肿瘤基因BRCA1中外显子上的24个异合突变(单核苷突变多态性)的检测。他们通过引入参照信号和被检测信号之间的色差分析使得杂交的特异性和检测灵敏度获得了提高[26]。另外,Kozal等人用高密度HIV寡核苷酸探针芯片对HIV病株的多态性作了分析[27]。Cronin等人用固化有428个探针的芯片对导致肺部囊性纤维化的突变基因进行了检测[28]。用生物芯片作杂交突变检测的美国公司有贝克曼仪器公司、Abbot laboratory、Affymetrix、Nanogen、Sarnoff、Genometrix、Vysis、Hyseq、Molecular dynamics等;英美学术机构有宾夕法尼亚大学、贝勒医学院、牛津大学、Whitehead institute for Biomedical Research,海军研究室,Argonne国家实验室等。
通过杂交分析DNA的另一应用技术是重复测序。那么,重复测序是怎么工作的呢?首先,人们将长度为8-20个核苷的探针合成并固定到指甲盖大小的硅芯片或玻璃芯片上。当含有与探针序列互补的DNA被置于联有探针的芯片之后,固化探针就会通过与其序列互补的DN段杂交而结合[10]。通过使用带有计算机的荧光检测系统对“棋盘”每个格子上的荧光强弱及根据每个格子上已知探针的序列进行分析与组合就可得知样品DNA所含有的碱基序列。最近美国的Science杂志对应用芯片杂交技术测序作了报道。Chee等人在一块固化有135000个寡核苷酸探针(每个探针长度为25个核苷)的硅芯片上对长度为的整个人线粒体DNA作了序列重复测定。每个探针之间的空间间隔为35微米。测序精度为99%。另外Hacia还报道了一种微测序分析法(minisequencing-based assays)为检测所有可能的碱基序列变化提供了强有力的手段。此方法中需要将不同颜色荧光染料标记的四种ddNTP,加入到引物的酶促反应中,微阵列上固化的寡核苷酸用作酶促反应的引物,靶序列作为模板,可检测到靶序列上的碱基变化。用生物芯片从事杂交测序的美国公司有Affymetrix和Hyseq[29]。
用作基因表达分析的DNA芯片
随着人类基因组计划的顺序进行,越来越多的能够表达的人基因序列以及引发疾病和能预测疾病的各种突变正在为人们逐渐认识。为了能够同时对多个可能的遗传突变进行搜寻、加快功能基因组学研究的进程,人们现已把越来越多的注意力放到了能同时提供有关多个基因及其序列信息的所谓并行分子遗传学分析(parallel molecular genetic analysis)方法上。功能基因组学所研究的是在特定组织中、发育的不同阶段或者是疾病的不同时期基因的表达情况。因此它的要求是要能在同一时刻获得多个分子遗传学分析的结果。譬如,许多疾病引发基因可能会有数以百计的与表征有关的特定突变,因而,要求能有同时筛检这些突变的有效方法。另外,任何一个细胞中都会有上千个基因在表达。而细胞间基因表达的差异往往能反应出这些细胞是发育正常还是在朝恶性肿瘤细胞方向发展。采用芯片技术利用杂交对基因表达进行分析的好处是它能用很少的细胞物质便能提供有关多基因差异表达的信息,从而给疾病诊断和药物筛选提供前所未有的信息量[30]。Lockhart等人采用固化有65000个不同序列的长度为20个核苷的探针芯片,定量地分析了一个小鼠T细胞线中整个RNA群体内21个各不相同的信使RNA。这些专门设计的探针能与114个已知的小鼠基因杂交。分析发现 在诱发生成细胞分裂后,另外有20个信使RNA的表达也发生了改变。检测结果表明该系统对RNA的检出率为1:300000,对信使RNA的定量基准为1:300[32]。Wang等人在研究表鬼臼毒素吡喃葡糖苷(etoposide)诱导的细胞程序性死亡时,利用DNA芯片技术,制备了一次可检测6591种人细胞信使RNA的寡聚核苷酸微阵列,检测到诱导后的细胞内有62种信使RNA的量发生了变化。通过挑选12个与诱导作用有关的基因作进一步研究,它们发现了2个新的p53靶基因[33]。DeRisi等人将一个恶性肿瘤细胞线中得到的870个不同的cDNA探针通过机械手“刷印”至载玻片上以观察癌基因的表达情况。在比较两个标有不同荧光标记的细胞信使RNA群的杂交结果之后,他们对引入正常人染色体后肿瘤基因受到抑制的细胞中的基因表达结果进行了分析[34]。另外,Shoemaker等人报道了一种利用生物芯片来确定许多新近发现的酶母基因的生物功能的所谓分子条形编码技术。这种技术的好处是它能让我们以并行的方式定量地分析很复杂的核酸混合物[35]。Lueking等人最近采用蛋白质微阵列技术,把作为探针的蛋白质高密度地固定在聚双氟乙烯膜(polyvinylidene difluoride)上,并检测到了10pg的微量蛋白质测试样。对92个人cDNA克隆片段表达的产物进行检测,用单克隆技术作平行分析,证实了假阳性的的检出率低。由于蛋白质微阵列技术不受限于抗原-抗体系统,故能为高效筛选基因表达产物及研究受体-配体的相互作用提供一条新的有效途径[36]。
缩微芯片实验室
生物芯片 发展的最终目标是将从样品制备、化学反应到检测的整个 分析 过程集成化以获得所谓的微型全分析系统或称缩微芯片实验室。1998年6月,Nanogen公司的程京博士和他的同事们首次报道了用芯片实验室所实现的从样品制备到反应结果显示的全部分析过程。他们用这个装置从混有大肠杆菌的血液中成功地分离出了细菌,在高压脉冲破胞之后用蛋白酶K孵化脱蛋白,制得纯化的DNA,最后用另一块 电子 增强的DNA杂交芯片分析证实提取物是大肠杆菌的DNA。这是向缩微实验室迈进的一个成功的突破[37]。 目前 ,含有加热器、微泵微阀、微流量控制器、电子化学和电子发光探测器的芯片已经研制出来了,而且,也出现了将样品制备、化学反应和分析检测部分结合的芯片(例如,样品制备和PCR[38];竞争免疫测定和毛细管电泳分离[39])。相信不久的将来,包含所有步骤的缩微芯片实验室将不断涌现。
3 、结尾
经过近十年的不懈努力,生物芯片技术发展至今已经开始对生命 科学 研究的许多领域带来冲击甚至革命。以美国为首的西方发达国家在该领域已经取得了令人眩目的成就。到现在,从样品制备、化学反应到检测的三个步骤已获得了部分集成,三个部分的全部集成已初现端倪。 中国 在这方面尚未起步,如果各方面重视,投入一定的人力和物力,相信不久的将来在该领域中我们也会占有一席之地的。
参考文献
1 Koster H,et Biotechnology,1996;14:1123-1128.
2 Wilkerson CW,et Physics Letter,1993;62:2030-232.
3 Hang XC,et Chemistry,1992;64:2149-2154.
4 Southern EM,et in Genetics 1996;12:110-118.
5 Pennisi E,Science 1996;272:1737.
6 Kricka LJ,et of International Federation of&nbs p;Clinical Chemistry1994;6:54-59.
7 Kricka LJ,et al. Microfabricated Immunoassay Devices. In Principles & practice of Immunoassay (2ndEdition).Edited by Price CP and Newman DJ, Macmillan press,London,1996.
8 Cheng J,et Acids Research 1996;24:380-385.
9 Manz A,Chimia 1996;50:140-143.
10 Cheng J,Molecular Diagnosis 1996;1:183-200.
11 Cheng J,et preparation in microstructured devices, in Manz a,Bechar H.(eds)“Microsystem technology in Chemistry and life Scence”,a special volume in 12 Topics in current Chemistry Springer,HEIdelberg,1998;215-231.
13 Markx G H,et ;140:585-591.
14 Northrup MA,et of Transducers’95, the Eighth International conference on Solid-State Sensors and Actuators 1995;764-765.
15 Cheng J,et Biochemistry 1998;257/2:101-106.
nothrup MA,et of the 8thInternational Conference on Solid-State Sensors and actuators, and Eurosensors IX, 1995; 764-767.
16 Taylor TB, et Acids Research 1997;25:3164-3168.
17 Mrtin UK, et 1998;280:1046-1048.
18 Pace SJ,US Patent 4,908,112,1990.
19 Manz A,et ;593:253-258.
20 Wooley aT,et ;91:11348-11352.
21 Woolley AT,et ;68:4285-2186.
22 Woolley AT,et ;68:4081-4086.
23 Fodor SPA ,et ;251:767-773.
24 Sosnowski RG,et ;94:1119-1123.
25 Kreiner t.,Rapid genetic sequence analysis using a DNA probe array .
26 Hacia JG,et Genet,1996;14:441-447.
27 Kozal MJ,et Medicine,1996;2:753-759.
28 Cronin MT,et Mutation,1996;7:244-255.
29 Cheng J,et Diagnosis,1996;1:183-200.
30 Hacia J G,Nature genetics supplement,1999;21:42-47.
31 Scangos G,Nature Biotechnol,1997;15:1220-1221.
32 Lockhart DJ,Nature Biotechnol,1996;14:1675-1680.
33 Wang Y,et Letter,1999;445:269-273.
34 DeRisi J,et Genet,1996;14:457-460.
35 Shoemaker DD, et Genet, 1996;14:450-456.
36 Lueking A, et Biochem,1999;270:103-111.
37 Cheng J,et Biotechnology,1998;16:541-546.
38 Wilding P,et ;257:95-100.
生物系毕业论文 第5篇
人类早期的活动能力、也就是破坏自然的能力很弱,最多只能引起局部地区小气候的改变,所以几百万年间人与自然还能相安无事。但是工业革命以来情况发生争剧变化。工业化意味着大量燃烧煤和石油,意味着向地球大气排放巨量的废气。其中二氧化碳气体造成大气温室效应,使全球变暖、极冰融化、海平面上升;二氧化硫和氮氧化物可以形成酸雨;氯氟烃气体能破坏高空臭氧层,造成南极臭氧洞和全球臭氧层变薄。此外,工业化排放的污染气体也使人类聚居的城市成了浓度特高的大气污染岛……人类在发展经济、提高生活质量的同时也闯下了弥天大祸。不少灾害看起来似乎是天灾,而实际上却往往是属于人类自己造成的人祸。被破坏的地球大气正在对人类进行可怕的报复,大自然是绝不会因为人类的无知而原谅人类的。
1992年6月,世界各国元首、政府首脑云集巴西里约热内庐,在联合国《气候变化框架公约》上签字。为什么气候变化这样一个普普通通的科学问题,会变得如此令人关注?
原来,工业革命以来,由于人类大量燃烧化石燃料和毁灭森林,使全球大气中二氧化碳(CO2)含量在百年内增加了25%。如果按目前CO2浓度的增加速度,到2100年大气中CO2含量将增加一倍。据联合国发布的评估报告,那时全球平均气温会比现在上升~℃,这将引起极冰融化、海平面上升15~95厘米,从而淹没大片经济发达的沿海地区,还可能引起其他一系列严重问题。世界各国政府开始重视这种状况及其危害后果,共同商讨削减CO2排放量的问题。
什么叫温室效应
全球的地面平均温度约为15℃。如果没有大气覆盖,根据地球获得的太阳热量和地球向宇宙空间放出的热量相等的原理,可以计算出地球的地面年均温度为-18℃。这33℃的温差就是大气像被子一样保护地球造成的。这就是温室效应。
宇宙中任何物体都辐射电磁波。物体温度越高,辐射的波长越短。太阳表面温度约6000K,它发射的电磁波的波长很短,称为太阳短波辐射(其中包括从紫到红的可见光)。地面在接受太阳短波辐射而增温的同时,也时时刻刻向外辐射电磁波而冷却下来。地球发射的电磁波因温度较低而具有较长的波长,称为地面长波辐射。短波辐射和长波辐射在经过地球大气时的遭遇是不同的:大气对太阳短波辐射来说几乎是透明的,而它却强烈吸收地面长波辐射。大气在吸收地面长波辐射的同时,它自己也向外辐射波长更长的长波辐射(因为大气的温度比地面更低)。其中向下到达地面的部分称为逆辐射。地面接受逆辐射后就会升温,这也可以说是大气对地面起到了保温作用。这就是大气温室效应的原理。
地球大气的这种保温作用,很类似于种植花卉的暖房顶上的玻璃(温室效应也可称为暖房效应或花房效应),因为玻璃也具有透过太阳短波辐射和吸收地面长波辐射的保温功能。
温室效应源自温室气体
我们知道,并不是大气中的每种气体都会强烈吸收地面长波辐射的。地球大气中起温室作用的气体称为温室气体,主要有二氧化碳、甲烷、臭氧、一氧化二氮、氟里昂以及水汽等。它们几乎吸收地面发出的所有波长的长波辐射,只有一个很窄的区段吸收很少,这个区段被称为“盲区”。地球主要通过这个盲区把从太阳获得的热量中的70%又以长波辐射形式返还宇宙空间,从而维持地面温度不变。我们所说的温室效应,主要是指由于人类活动增加了温室气体的数量和品种,使这盲区即能返回宇宙空间的70%的热量的数值下降,使留下的余热增多而使地球变暖的情况。
不过,CO2等温室气体虽然吸收地面长波辐射的能力很强,但它们在大气中的数量却极少。如果把压力为一个大气压、温度为0℃的大气状态称为标准状态,那么把地球整个大气层压缩到这个标准状态,它的厚度是8000米。目前大气中CO2的含量是355ppm即百万分之355(ppm为百万分之一),把它换算到标准状态,就是米厚。在8000米厚的大气中就占这米厚的这一点点。甲烷含量是,相应是厘米厚。臭氧浓度是400ppb(ppb为ppm的千分之一)换算后只有3毫米厚。一氧化二氮是310ppb,毫米。氟里昂有许多种,但大气中含量最多的氟里昂12也只有400ppt(ppt是ppb的千分之一),换算到标准状态只有3微米。由此可见大气中温室气体是极少的。正因为如此,所以人为释放的温室气体如不加限制,很容易引起全球迅速变暖。
早在1938年,英国气象学家卡林达在分析了19世纪末世界各地零星的CO2观测资料后,指出当时CO2浓度已比世纪初上升了6%,并指出从上世纪末到本世纪中叶全球存在变暖倾向,在世界上引起了很大反响。为此,美国斯克里普斯海洋研究所的凯林于1958年在夏威夷的冒纳罗、亚山海拔3400米的地方建立起了观测所,开始了大气中CO2含量的精密观测。夏威夷位于北太平洋中部,几乎未受陆地大气污染的影响,观测结果有相当高的可靠性。
从冒纳罗亚山观测到的1958年4月到1991年6月大气中CO2浓度的变化曲线可以看出1958年时大气中CO2含量不过315ppm左右,而1991年已经达到了355ppm。问题的严重性还在于,人类每年燃烧55亿吨化石燃料(每吨约产生4吨CO2)中,大约只有一米进入了大气,其余一米主要被海洋和陆地植物所吸收。一旦海洋中CO2达到饱和,大气中CO2含量将成倍上升。从图上还可发现CO2含量还有季节变化,冬夏可以相差6ppm。这主要是由于北半球广阔大陆上植被冬枯夏荣的影响,因为植物在夏季大量吸收CO2因而使大气中CO2浓度相对降低。
根据对南极和格陵兰大陆冰盖中密封的气泡中空气的CO2浓度测定,古代大气中CO2含量一直比较稳定,大体是280ppm左右。只是从18世纪中叶,即工业革命前后开始逐步上升。人类用了240年时间,使大气中CO2浓度从280ppm上升到355ppm。
甲烷是仅次于CO2的重要温室气体。它在大气中的浓度虽比CO2少得多,但增长率却大得多。据联合国政府的气候变化委员会(IPCC)1996年发表的第二次气候变化评估报告的资料(简称《报告》),从1750~1990年共240年间CO2增加了30%,而同期甲烷却增加了145%。甲烷也称沼气,是缺氧条件下有机物腐烂时产生的,例如水田、堆肥和畜粪等都会产生沼气。一氧化二氮又称笑气,因为呼入一定浓度的这种气体后会引起面部肌肉痉挛,看上去像在发笑一样。它主要是由于使用化肥、燃烧化石燃料和由生物体所产生的。大气中的臭氧含量,在平流层中虽有减少,但在对流层中是增加的。氟里昂气体是氯、氟和碳的化合物,它在自然界里本不存在,完全是人类制造出来的。由于它的溶点和沸点都比较低,不燃、不爆、无臭、无害、稳定性极好,广泛用来生产制冷剂、发泡剂和清洁剂等。地球大气中浓度最高的氟里昂12和氟里昂11含量虽都极少,但这些年增长率却很高,均达到年增5%。根据1987年国际《蒙特利尔议定书》,它在大气中的浓度将在21世纪初开始逐渐减少。
应当说明,CO2以外的其他温室气体在大气中的浓度虽比CO2小得多,有的要小好几个量级,但它们的温室效应作用却比CO2强得多,它们对大气温室效应的作用,根据IPCC第二次《报告》,都只比CO2低一个量级。这是值得注意的。
温室效应的后果
如前所述,工业革命前大气中CO2含量是280ppm,如按目前增长的速度,到2100年将增加到550ppm,即几乎增加一倍。全世界的许多气象学家都在努力研究,CO2含量增加一倍以后,到2100年全球的平均气温会增高多少?
目前采用的具体办法是,根据大气运动规律和物理状态变化规律,设计成数值模式进行计算。但由于人们对大气运动变化规律的认识还不够完善,采取的简化设计办法也不同,因而各个模式的计算结果常相差很大。为此80年代美国科学院组织了评估委员会,对这些模式的结果进行研究和综合评诂,最终得出CO2倍增后全球平均气温将上升~℃。这就是对本问题最有权威的组织——联合国IPCC第一次《报告》中采用的数字。
近年来,气候模式的模拟能力有了重大改进,这主要是考虑了大气中气溶胶(空气中悬浮的微小颗粒)的作用。因为在燃烧化石燃料放出CO2的同时也释放了巨量的硫化物等气溶胶。这种气溶胶颗粒会遮挡部分阳光使之无法到达地面,使地面气温降低,起到冷却作用。其数值据IPCC估计可达-瓦/平方米,即相当于CO2增温效应(+瓦/平方米)的1/3,比甲烷的增温效应(+瓦/平方米)还略大。主要根据这个改进,IPCC1996年公布的第二个《报告》中,把2100年CO2倍增后全球平均气温的升温值从~℃,修改为~℃。评估报告中还指出,由于海洋的巨大热惯性,到2100年这个增温值中大约只有50~90%得以实现。
模式计算结果还说明,全球平均增温~℃并不均匀分布于世界各地。赤道和热带地区不升温或几乎不升温,升温主要集中在高纬度地区,数量可达6~8℃甚至更大。这一来引起另一严重后果,即两极和格陵兰的冰盖会发生融化,引起海平面上升。北半球高纬度大陆的冻土带也会融化或变薄,引起大范围地区沼泽化。还有,海洋变暖后海水体积膨胀也会引起海平面升高。IPCC的第一次评诂报告中预计海平面上升20~140厘米(相应升温~℃),第二次评估报告中修改为15~95厘米(相应升温~℃),最可能值为50厘米。即比第一次评估结果降低了约25%。IPCC的第二次评诂报告还指出,从19世纪末以来的百年间,由于全球平均气温上升了~℃,全球海平面相应也上升了10~25厘米。
全球海平面的上升将直接淹没人口密集、工农业发达的大陆沿海低地地区,后果十分严重。1995年11月在柏林召开的联合国《气候变化框架公约》缔约方第二次会议上,44个小岛国组成了小岛国联盟,为他们的生存权而呼吁。
此外,研究结果还指出,CO2增加不仅使全球变暖,还将造成全球大气环流调整和气候带向极地扩展。包括我国北方在内的中纬度地区降水将减少,加上升温使蒸发加大,气候将趋于干旱化。大气环流的调整,除了中纬度地区干旱化之外,还可能造成世界其他地区气候异常和一些灾害,例如低纬度台风强度将增强,台风源地将向北扩展等。气温升高还会引起或加剧一些传染病流行。以疾为例,过去5年中世界痰疾发病率已翻一两番,现在全世界每年约有5亿人得痰疾,其中200多万人死亡。
但是,温室效应也并非全是坏事。最寒冷的高纬度地区增温最大,农业区将向极地大幅度推进。CO2增加也有利于植物光合作用而直接提高有机物质产量。还有的专家指出,在我国和世界历史上温暖期多是降水较多、干旱区退缩的繁荣时期。
在大气温室效应这个问题上,也有不同意见。有些科学家认为:目前数值模式还不成熟,计算结果过于夸大;百年升高~℃属于正常气候变化,不能证明是大气温室效应所造成。这是少数人的意见。
尽管如此,对于目前大气中CO2浓度和全球温度正迅速增加,以及温室气体增加会造成全球变暖的原理,都是没有争论的事实。我们如果等到问题已发展到了可以明显感知的水平,就往往难以逆转。因此必须引起高度重视,以便采取对策,保护好人类赖以生存的大气环境。
全球对策
大气温室效应造成的全球变暖,对策主要有以下3个方面。
第一方面是减少目前大气中的CO2。最切实可行的办法是广泛植树造林、加强绿化、停止滥伐森林;用太阳光的光合作用大量吸收和固定大气中的CO2。还有利用化学反应来吸收CO2的办法,但在技术上都不成熟,经济上更难大规模实行。
第二方面是适应。这是无论如何必须考虑的问题。例如除了建设海岸防护堤坝等工程技术措施以防止海水入侵外,有计划地逐步改变当地农作物的种类和品种,以适应逐步变化的气候。日本北部因为夏季过凉,过去并不种植物稻,即使种了产量也很低。由于培育出了抗寒抗逆品种,现在即使在最北的北海道也不仅能长水稻,而且产量还很高。这是一个很好的例子。气候变化是一个相对缓慢的过程,只要能及早预测出气候变化趋势,我们是能找到适应对策并顺利实施的。
第三方面是削减CO2的排放量。这是在1992年巴西里约热内卢世界环境与发展大会上,各国领导人共同签署的《气候变化框架公约》的主要目的(框架是指比较原则,有待进一步具体化的意思)。公约要求在2000年发达国家应把CO2排放量降回到1990年水平,并向发展中国家提供资金和转让技术,以帮助发展中国家减少CO2的排放量。近百年来全球大气中CO2浓度的迅速升高,绝大部分是发达国家排放造成的。发展中国家首先是要脱贫、要发展,发达国家有义务这样做。
由于公约是框架性的,并没有约束力。而削减CO2排放量直接影响到发展中国家的经济利益,因此有的发达国家不仅没有减排,还在增排,现在看来,2000年根本不可能降到1990年水平。在1997年12月11日结束的联合国气候变化框架公约缔约方第3次大会(日本京都会议)上发展中国家和发达国家展开了尖锐紧张的斗争。最后,发达国家作出让步,难产的《京都议定书》终于得到通过。议定书规定,所有发达国家应在2010年把6种温室气体(CO2、一氧化二氮、甲烷和3种氯氟烃)的排放量比1990年水平减少。这虽与发展中国家的要求的到2010年减少15%和到2020年减少20%的目标相差很大,但毕竟这是一份具有约束力的国际减排协议。
生物系毕业论文 第6篇
栀子叶片和果实中藏花素-1的含量使用甲醇-水溶液提取栀子叶片和果实中的藏花素-1,提取液用于 HPLC 分析。通过与 crocin-1对照品的保留时间和吸收光谱进行比较,在果实样品中观察到 crocin-1 峰,在叶片样品中未观察到crocin-1 峰(图 2)。同时,检测到果实中 crocin-1 的含量为( ± ) mg g–1。
GjPSY基因的克隆为了克隆GjPSY基因,构建了栀子果实的cDNA 文库,以简并引物从 cDNA 文库中扩增得到GjPSY基因 cDNA 的中间片段GjPSY-M,长度为688 bp。接着通过 5′ RACE 获得了长度为 1596 bp的5′GjPSY片段;通过 3′RACE 获得了长度为 956bp的3′GjPSY片段。将5′GjPSY、GjPSY-M和3′GjPSY共 3 个片段序列进行拼接,得到全长 cDNA,长度为 1876 bp。根据全长序列从 cDNA 文库中扩增得到 ORF 序列(图 3);经序列分析,此全长 cDNA 含有 1314 bp 的 ORF,5′ 端非翻译区为 393 bp,3′端非翻译区为 169 bp,命名为GjPSY (GenBank登陆号:HQ599860)。预测GjPSY基因编码的蛋白质含有 437 个氨基酸,分子量为 kDa,等电点为。
GjPSY的序列分析GjPSY 的氨基酸序列经 BLAST 分析,结果表明,GjPSY 与多种植物的八氢番茄红素合成酶的序列相似,它们均含有两个保守的富含天冬氨酸的模体 DXXXD。这个模体被认为可通过 Mg2+结合于底物的焦磷酸基团,在八氢番茄红素合成酶催化两个 GGPP 分子缩合的反应中发挥重要作用。
采用 ClustalW2 软件对相似度较高(相似度为 55% ~ 93%)的18 条来自多种植物的八氢番茄红素合成酶序列进高蓝等:栀子八氢番茄红素合成酶基因的分离及表达分析442 热带亚热带植物学报第21卷行同源进化比对,采用 Mega 软件构建氨基酸序列的 NJ (Neighbor-joining)系统进化树,用重复1000 次的自展支持率(Bootstrap)检验各分支的置信值。结果表明,GjPSY 与中粒咖啡的 PSY最为相似,与番茄和拟南芥 PSY 的相似度均大于来自禾本科的玉米及水稻的。而在与玉米和水稻的各 3 种 PSY 的比对中可知,GjPSY 与 PSY1 最为相似,而与 PSY3 关系最远。
GjPSY的表达分析分别提取栀子叶片及果实中的总 RNA,采用RT-PCR 法分析GjPSY的表达水平。以组成性表达的RPS25-1为内参。结果表明,GjPSY的转录水平在叶和果实中表现一致。
讨论类胡萝卜素是异戊烯类色素,在植物的光合作用和光保护作用中发挥作用,是人体中重要的营养物质,是维生素 A 的前体。由类胡萝卜素衍生的阿朴类胡萝卜素,如藏花酸和藏花素既可作为色素使用,也具有药用作用。有研究表明,藏花素和藏花酸具有防止动脉粥样硬化、抗炎、抗细胞增殖、预防视网膜变性、神经保护作用和改善胰岛素抵抗等作用。八氢番茄红素合成酶是类胡萝卜素生物合成中的第一个限速酶,PSY基因在单子叶和双子叶植物中广泛存在基因复制现象,这个基因家族中各个基因的表达往往具有组织特异性,或对环境胁迫等因素产生应答。目前对多种植物的PSY基因的分离、表达及转基因植物的分析研究方兴未艾。
番茄中有两个PSY基因:PSY1和PSY2,它们均在幼苗、成熟叶片及果实中表达。PSY1在幼苗和果实成熟后期的表达高于PSY2,而PSY2主要在成熟叶片中表达,推测PSY1是由PSY2经基因扩增产生的平行同源基因。GjPSY 的氨基酸序列与番茄的 PSY2 的氨基酸序列较相似(相似度达 81%,与 PSY1 的相似度为 75%),并且在果实中的表达水平与叶中相近,提示它不是与果实成熟相关的基因。两个番茄PSY1突变体,一个是 W180* 无义突变,一个是一个氨基酸替换突变体 P192L,对它们果实中的类胡萝卜素的含量和比例进行了分析。W180* 的果实为黄色果肉,直到成熟颜色都不发生变化,代谢分析表明在果实中没有类胡萝卜素,其 PSY1 蛋白失去活性,证明PSY1是唯一在果实成熟过程中发挥作用的PSY。P192L 果实也为黄色,直到破色期后的第 3 天才转为红色,这是由于八氢番茄红素合成的减少造成番茄红素和β-胡萝卜素的积累延迟,其 PSY1 蛋白的活性被抑制。与 GjPSY 的氨基酸序列比对表明,W180* 发生突变的氨基酸对应于GjPSY 的 W204,P192L 突变体的氨基酸相当于GjPSY 中的 P216,这两个氨基酸均在两个 DXXXD模体之间,且在多种植物的 PSY 中高度保守。
木薯中的两个PSY基因在不同组织中的表达也不相同,叶中PSY1和PSY2均有高水平的表达,在根和花药中的表达水平均较低,但根中PSY2的表达是PSY1的 10 倍。另外,木薯的PSY1可对高盐胁迫响,PSY2中的单碱基突变导致的单氨基酸突变(A191D)可使木薯根中的类胡萝卜素含量提高 20 倍。A191 氨基酸位于两个 DXXXD图 4 来自不同植物的 18 个 PSY 的亲缘关系图谱。节点上的数字为重复 1000 次的自展支持率(Bootstrap)。子叶和果实中GjPSY基因的转录水平等:栀子八氢番茄红素合成酶基因的分离及表达分析444 热带亚热带植物学报第21卷模体之间的较保守的区域。本研究中分析的来自12 种植物的 18 条 PSY 氨基酸序列中 A191 均为丙氨酸。GjPSY 的氨基酸序列与木薯 PSY2 的相似度为 76%,与 PSY1 相似度为 74%,所以更接近PSY2。但从以上与番茄和木薯的序列比对及表达分析还难以明确判断 GjPSY 的功能。
玉米、高梁、小麦和水稻各有 3 个PSY基因,都编码有功能的八氢番茄红素合成酶。小麦中的3 个PSY基因中,只有PSY1与面粉的黄色素含量有关,PSY2只获得了部分序列,PSY3的启动子区存在可应答脱落酸 ABA 的顺式作用元件。其PSY1的表达与籽粒中类胡萝卜素的积累正相关,PSY2则与叶中类胡萝卜素的合成相关,在叶中表达最多。PSY3在未受到胁迫的叶中的表达比PSY1和PSY2低,在根中稍多一点。在外源 ABA且受胁迫的根中,3 种PSY的表达均有增加,以PSY3的增加最多,即PSY3对 ABA 的反应远大于PSY1和PSY2。与小麦的比较分析也难以判断GjPSY的种类和作用。玉米的PSY1主要在叶片和胚乳中表达,并与胚乳中类胡萝卜素的积累呈正相关关系;其PSY2的表达则与光诱导的脱黄化过程正相关;PSY3在根和胚乳中大量表达,可被干旱、高盐和外源 ABA 处理所诱导。水稻胚乳中不含类胡萝卜素,3 种PSY基因在胚乳中都无表达;而在进行光合作用的组织中,3 种基因都有表达。
水稻的OsPSY1和OsPSY2在根和叶中的表达均高于OsPSY3,其中OsPSY1和OsPSY2均受光调控,OsPSY1表达最多。OsPSY3不被光诱导但在根中的表达可被高盐或干旱所诱导。通过分析水稻、玉米和拟南芥的PSY基因的结构及它们的启动子区,认为OsPSY1是单子叶和双子叶植物的古老PSY基因的遗存,OsPSY2和OsPSY3均是OsPSY1的平行同源基因。因此,我们推测GjPSY相当于玉米和水稻中的PSY1。