高等数学毕业论文(推荐9篇)

个人学习 10 0

高等数学毕业论文 第1篇

大专高等数学教学论文

大专高等数学教学论文【1】

【摘要】高等数学是学习现代科学文化知识及其他专业课必不可少的一门重要的基础课。

本文结合笔者自身,并针对问题提出相应的对策。

【关键词】高等数学问题对策 研究

高等数学是学习现代科学文化知识和其他专业课必不可少的基础知识。

但在大专高等数学的日常教学中还存在着诸多问题,本文将从以下五个方面分析大专高等数学的教学存在的问题,并结合实际提出一些解决的对策。

问题一: 学员对高等数学的学习兴趣不高

大专学员的文化课普遍掌握的不是很好。

因此,在日常教学中,尽可能地在教学过程中多加些实际生活中应用的例子,增强学习的兴趣。

其次,教员在讲授高等数学的某些知识点时,应尽量的与学员将来要学习的专业课的一些内容联系起来,学员必定会更加注意听讲。

最后,教员课前一定要认真备课,不能“照本宣科”,如果教员只顾自己讲,而不考虑学员的反应如何,经常这样的话,学员自然对学习高等数学失去兴趣。

问题二: 学员数学基础参差不齐

大专学员的数学基础参差不齐,如果将所有学员安排在同一个班级上课的话,教员往往顾此失彼,教学效果难以达到预期目的。

这就要求教员在日常高等数学教学过程中要体现“以人为本,以学员为中心” 、“因材施教”的教育原则,在日常高等数学教学中可把学员分成基础班、中级班、提高班三个层次,按照事先制订的不同层次的教学目标和要求,进行分班教学,也可尝试分层次的期末考试。

这样的分层次教学与考核,让基本处于同一层次的学员在一起学习,避免了传统教学中学员成绩悬殊太大而产生的自卑和厌学情绪。

问题三: 部分教员多媒体辅助教学运用不恰当

在高等数学日常教学中恰当地使用多媒体课件,不仅能提高课堂效率,有利于调动学员的学习兴趣,但也存在一些问题比如有些教员只顾播放PPT,与学员没有互动,导致教学效果大大不理想。

为了避免上述情况发生,在日常教学中还是应该以板书为主,对于一些题目可以将主要解题过程在黑板上演算出来,最后一些繁琐的计算可以借助多媒体展示。

问题四: 教学内容与教学时间方面存在问题

由于院校改革,大专高等数学课时被严重压缩。

如果还按照以往教学方式,教员往往为了完成教学任务而赶进度,一些重、难点内容难以展开,影响了教学效果。

所以在大专高数的教学中不必追求大而全而是以应用为目的,以必需、够用为度,将一些重点内容,其他专业课必须用到的相关知识点要详细、高质量的讲给学员,而那些可要可不要的知识点可以简单的给学员作一些介绍,让学员了解即可。

问题五: 部分教员教学能力不强,与学员的要求存在差距

目前大多数教员都具有研究生学历,但是有些教员对于具体的教学过程却知之甚少。

要改变这样的情况,一方面学校要多给教员创造一些学习的机会。

另一方面也需要学校多为教员组织一些相关能力方面的培训,进而提升教员的教学水平与经验。

学校可以定期通过教学比赛来选拔教学标兵树立榜样,进而促进教员自身提高自己教学能力的要求,同时也可以让教学能力强,教学效果好的老师上示范课,让全体教员进行现场观摩,这对提高教员的`教学能力也是大有帮助。

参考文献

[1]马丽霞.高职院校高等数学教学改革探析[J].北京城市学院学报,.6

[2]郭迎春,茅国华.高等数学教学现存问题分析与对策研究[J].河北大学成人教育学院学报,.9(4)

大专高等数学教学【2】

摘要:高等数学作为大专教育中的基础课程,需要我们给予重视和思考。

高等数学是大专院校一门重要的基础课程,它不但为学生学习后继课程和解决实际问题提供了必不可少的数学基础知识及常用的数学方法,而且在培养学生的创新思维能力方面也起着重要的作用。

关键词:大专;高等数学;教学探讨

高等数学是大专院校一门重要的基础课程,教师要勤于思考,善于总结,引导学生发现生活中很多有趣、生动、形象而又蕴含了数学理论基础和创新性思维的现象,唤起学生学习数学的热情,增强学生主动学习的动力,最终提高学生未来的适应社会、胜任工作的能力。

1.过程教学的理论依据

学生的学习是在自己原有认知结构的基础上的一个主动建构过程,能够使学生的思维始终处于积极状态的教学才是有效的教学,而过程教学正是在教学中通过展现数学家的思维过程(创造过程)、教师自己的思维过程,使学生在重新经历数学知识的发现、形成、改造、发展中和数学家同思考、共发现,从而使学生能真正体会到数学家是如何选择问题的突破口,如何合理选择发明创造的方法,如何调整研究问题的方向,面对错误是如何修正的等等。

这样的教学不但有利于发挥学生的主动性,而且更有利于培养学生的创造性,使学生学到活生生的创造整理方法,同时学生的心灵也可以受到潜移默化的影响。

过程教学中全体学生的不同思维展现,使不同的思考方法异彩纷呈,更易在同学之间产生影响。

好的方法更易被采纳,失败的教训更易接受,从而更有利于解决他们将来遇到的新问题,因此在教学中暴露思维活动的过程应是高数教学贯穿的生命主线。

2.过程教学的实施

概念、定理、公式的教学中,引导学生经历概念、定理、公式的发现、形成及证明思路的形成过程,让学生掌握不同定理、公式之间的联系和区别。

教材中一般只给出了数学概念的定义、定理的内容,省略了概念、定理提出、证明方法的形成过程,从而给学生的学习造成了一定的困难,笔者认为教师应向学生提供数学概念、定理形成的有效情景,引导学生利用自己已有的知识和经验,通过主动探索和积极思考,亲身经历概念是如何发现、形成的,最终由学生自己发现相应的概念与定理,这样,学生才能真正领悟概念的本质,弄清概念的外延,从而避免在后继的学习中出现概念性错误。

在解决问题时向学生展现问题的提出、思路的形成、发展,调控以及修正过程。

“问题是数学的心脏”,笔者认为教师应采用适当的方法来暴露、揭示教师和数学家真实的解决问题的思维过程,如当教师遇到问题时是如何寻找突破口,在问题的解决过程中如何调控自己的思维,如何发现和提出新的问题等等。

我们知道证明“∈(a,b),使f(ξ)=0或f′(ξ)=0”是微分中值定理应用中的两类重要问题,常常利用Rolle定理来解决,对于第一类问题往往通过找出f(x)的原函数F(x),对F(x)在[a,b]利用Rolle定理证明F′(x)在(a,b)内存在零点即可,对于第二类问题也可类似解决,可见两个问题都转化为求f(x)的原函数F(x)。

而学生面对此类问题往往却束手无策,不知如何下手,历来是教学的重点更是难点,可见如何使学生通过例题的学习掌握规律、找出通法,掌握解决问题的实质和关键应是提高解题教学质量的有效途径。

3.“过程教学”与“结果教学”的协调统一

选择恰当的教学内容。

高等数学毕业论文 第2篇

教学内容

合理安排教学内容

在成教的高等数学教学中,根据教学大纲的要求,适当对高等数学的教学内容进行修改,尤其是在讲课的方式中,对各个知识点的讲解要把握住“度”。比如,函数的概念在各个教材中对函数的定义写得都比较抽象,那么在面对成教学生的教学过程中可以强调学生们抓住函数定义的关键词“唯一”,对于自变量的任意一个取值,因变量必须有唯一的值与之对应,所以在理解函数定义的时候,最关键就是理解“唯一”两个字[3]。在授课过程中,把掌握基本知识、基本概念、基本定理放在首位,提高学生们解决问题、分析问题的能力,不必过分追求高等数学的严密性。又比如讲解导数定义时,可以引入物理学中速度的相关知识,从路程与速度之间的关系引入导数的定义,使学生们更容易理解导数的概念。教学中注重新旧知识之间的联系,帮助学生建立起知识体系,降低知识的难度。

成教高等数学的教学应于专业课知识相结合

当代的高等数学知识已应用于各个学科领域,比如工科、经济学、管理学,但是绝大多数高等数学教材重理论轻应用,对于高等数学在应用方面的重视程度不够。教师在高等数学的讲授过程中,应针对不同的专业讲授的侧重点不同,当然这对教师也提出了更高的要求,要求授课教师不仅仅掌握数学知识,对其他专业课的知识也应该有所涉猎。在讲授过程中,应尽量与该专业的专业知识相结合。比如对于经管类学生,当讲到函数单调性判别的时候,应把该节内容与价格策略的制定相结合,把经济学中价格弹性的概念与函数单调性的判别相结合,以此为根据,制定价格策略,并可以把此概念与生活中遇到的实际情况相结合。根据函数的单调性的相关知识可以得到结论,对于富有弹性的商品,如电脑、手机,应该适当地提高商品的价格,可以使总收益增加;对于缺乏弹性的商品,如粮食、商品房,应该适当地降低商品的价格,可以使总收益增加。即增加了课堂的趣味性,又能把抽象的数学知识与专业课知识相结合。

把数学建模的相关知识运用于教学

在高等数学的教学中,数学软件的应用已相当普遍,如MATLAB、LINGO等,对于数学上繁琐的计算,借助于数学软件更容易实现。在实际的教学过程中,可以把数学建模的思想运用到成教的课堂上,并借助数学软件来实现,可以让学生们见识到数学强大的解决实际问题的力量。在面对成教学生的教学过程中,把数学建模的相关知识运用于教学,可以使学生们在学习数学知识的同时,掌握解决问题、分析问题的方法,培养学生的数学思维能力。

教学方法

培养学生的自学能力

在教学方法上,应运用多元化的教学模式,不拘泥于传统的教学方法,除了课堂讲授外,还可以引导学生去思考学习,成立小组讨论等方法。根据笔者多年在成教授课的经验,多种教学方法的搭配,不仅增加了课堂活跃的气氛,也提高了学生们学习的兴趣,把被动学习变为主动学习,对于基础较差的成教学生,可以启发他们多思考,促进学生思维的发展。在学习方法上,强调自学的重要性,引导学生联想沟通各个概念、定理之间的关系,找到解决数学问题的办法。

现代教学技术的应用

在多媒体出现之前,高等数学的教学仅仅是黑板加粉笔的模式,多媒体的出现彻底地改变了这一教学模式,运用多媒体教学不仅丰富了课堂的内容,而且能够形象生动地讲解高等数学概念,比如导数的几何意义,仅仅借助于黑板加粉笔,并不能很好地表现,尤其是导数的定义本质上是一种极限,而极限是一个动态的变化过程,借助于多媒体手段可以很轻松地实现曲线的割线是如何随着自变量的改变量而趋向于零,使学生能够更形象地理解导数的几何意义。又比如定积分的概念,由于过去传统教学模式的局限性,完全靠教师的教学经验去描述定积分的几何意义,借助于多媒体设备,可以运用数学软件设计动画图像,动态地描述定积分的几何意义,可以更加深学生们对定积分定义的理解。多媒体教学使得教学更加直观生动,当然,传统的教学手段也不可少,在具体的教学实际中,应把多媒体教学与传统的教学手段相结合,这样会使教学效果更好。

通过互联网建立答疑系统

由于成教学生普遍基础较差,对抽象的高等数学知识理解起来会有一定的难度,这就要求授课教师能及时解答学生们提出的问题。在传统的教学过程中,很多教师往往只注重对题目的解释,而忽略解题的思维过程。通过互联网技术,将教师对题目的解答经验放在互联网上,建立解答系统,并定期更新,不断地丰富解答方法和思路,使学生们可以非常方便地获取相关知识,并建立“解答问题聊天室”或者是通过“YY语音”及时解答学生们提出的问题。在“解答问题聊天室”中有很多题目同学们通过相互间的讨论就可以得到答案,教师只需做适当的引导即可,这样不仅把教师从重复性劳动中解脱出来,而且还可以使得同学们通过讨论,加强对知识的理解。

分层次教学在成人高等数学教学中的应用

高等数学分层次教学是因材施教原则在高等数学教学中的具体运用,它根据因材施教的原则,对不同成绩、不同基础的学生提出差异化的教学目标,运用不同的教学手段,通过不同的教学过程来实施高等数学的教学工作[4]。这种教学方法更适合于数学基础不同的学生,更符合学生的实际情况,可以有效地调动学生的学习积极性,尽可能地挖掘学生的潜力。在我国教育教学的很多学科中都有分层次教学的相关理论研究,但是对于如何将分层次教学运用于成人教育的高等数学教学中,相关的理论叙述很少。鉴于全日制学生和成教学生有很大的区别,如果直接把已有的相关理论和经验运用于成教高等数学教学中,未必会取得很好的效果,所以,必须结合成人教育的特殊情况,针对成教学生设计更适合的分层次教学方法。比如,针对不同数学基础的成人教育学生制定不同的教学目标,改革分班授课的传统模式,引入分级分班授课。

4结束语

由于成人教育自身的特点,对于成教学生的高等数学教学是一个非常有必要深入研究的课题。不仅仅要因材施教,更重要的是,应该“因人施教”,成人教育中的高等数学教学需要与时俱进,不断调整教学方法来提高教学质量,达到教学目的。作为该课程的授课教师,应该始终将数学课程的教学方法与日常的教学科研紧密结合起来,不断地更新教学观念,为培养具有较高数学素质的科技人才做出应有的贡献。

【参考文献】

[1]张芯蕊.浅谈成人高等数学的教学方法[J].高校教育研究,,(4):177—179.

[2]_,李开慧.基于数学新课标的高师数学教育课程改革研究与实践[J].重庆师范大学学报(自然科学版),,(7):116—118.

[3]邵志强.提高高等数学教学质量的有效途径[J].福州大学学报(哲学社会科学版),,(9):36—37.

[4]冯保平.成人教育中高等数学分层次教学探索[J].现代企业教育,,(6):121—122.

高等数学毕业论文 第3篇

一、数学文化与数学文化观下的教学模式

(一)数学文化

文化视角的数学观就是视数学为一种文化并且在数学与其他人类文化的交互作用中探讨数学的文化本质。在数学文化的观念下,数学思维不单单是弄懂数量关系、空间形式,而且是一种对待现实事物的独特的态度,是一种研究事物和现象的方法;在数学文化的观念下,那种把数学知识与数学创造的情境相分离的传统课程教学方式将会被摒弃;在数学文化的观念下,数学教学不再把数学当作是孤立的、个别的、纯知识形式,而是将其融入到整个文化体系结构当中。总之,数学作为一种文化,可使数学教育成为造就培养下一代,塑造新人的有力工具。目前,数学作为一种文化现象已经得到广泛认同,但是,迄今为止,“数学文化”还没有一个公认的贴切定义,很多专家学者都从自己的认识角度论述数学文化的涵义。从课程论的角度来理解数学文化,数学文化是指人类在数学行为活动的过程中所创造的物质产品和精神产品。物质产品是指数学命题、数学方法、数学问题和数学语言等知识性成分;而精神产品是指数学思想、数学意识、数学精神和数学美等观念性成分。数学文化对人们的行为、观念、态度和精神等有着深刻影响,它对于提高人的文化修养和个性品质起着重要作用。[1]

(二)数学文化观下的教学模式

在数学文化的观念下,数学教育就是一种数学文化的教育,它不仅仅强调数学文化中知识性成分的学习,而且更注重其观念性成分的感悟和熏陶。数学文化观下的数学教育肩负着学生全面发展的重任,它通过数学文化的传承,特别是数学精神的培育,来塑造学生的心灵,从而最终达到提高学生数学素养的目的。但长期以来,人们总是把数学视为工具性学科,数学教育只重视数学的工具性价值,而忽略了数学的文化教育价值。到目前为止,高等数学教学仍采用以知识技能传授为主的单一教学模式,即把数学教育看作科学教育,主要强调数学基本知识的学习和基本计算能力的培养,缺少对数学文化内涵的揭示,缺少对学生数学精神、数学意识的培养。数学文化观下的教学模式是一种主要基于数学文化教育理论,以数学意识、数学思想、数学精神和数学品质为培养目标的教学模式。构建数学文化观下的教学模式,就是为了使教师教学有章可循,更好地推广数学文化教育。[2]

二、对高等数学传统教学模式的反思

(一)高等数学现代教学模式回顾

我国是有着两千多年文明历史的国家,在不同的历史时期,教学形式各有不同。新中国成立以来,高等数学教育教学模式经历了多次改革的浪潮。新中国成立初期,受前苏联教育家凯洛夫教育理论的影响,数学课堂教学广泛采用的是“组织教学、复习旧课、讲授新课、小结、布置作业”五环节的传统教学模式,很多教学模式都是在它的基础上建立起来的。上世纪80年代,开始了新一轮高等数学教学方法的改革,这一时期教学模式的改革主要以重视基本知识的学习和基本能力的培养为主流,并带动了其他有关教学模式的研究与改革。近年来,随着现代技术的进步和高等数学教学改革的不断深入,对高等数学教学模式研究和改革呈现出生机勃勃的景象。从问题的解决到开放性教学;从创新教育到研究性学习;从高等数学思想和方法的教学到审美教学等,高等数学教学思想、方法和教学模式呈现出多元化的发展态势。现在比较提倡的教学模式有:数学归纳探究式教学模式;“自学—辅导”教学模式;“引导—发现”教学模式;“情境—问题”教学模式;“活动—参与”教学模式;“探究式教学模式”等。研究这些教学模式,能够学习和借鉴它们的研究思想和方法,为本文基于数学文化观的高等数学教学模式的建构提供方法论支持。

(1)“自学—辅导”教学模式,是指学生在教师指导下自主学习的教学模式。这一模式的特点不仅体现在自学上,而且体现在辅导上,学生自学不是要取消教师的主导作用,而是需要教师根据学生的文化基础和学习能力,有针对性的启发、指导每个学生完成学习任务。“自学—辅导”教学模式能够使不同认知水平的学生得到不同的发展,充分发挥学生各自的潜能。[3]当然,这一教学模式也有其局限性,首先,学生应当具备一定的自学能力,并有良好的自学习惯;其次,受教学内容的限制;此外,还要求教师有较强的加工、处理教材的能力。

(2)“引导—发现”教学模式,主要是依靠学生自己去发现问题、解决问题,而不是依靠教师讲解的教学模式。这一教学模式下的教学特点是,学习成为学生在教学过程中的主动构建活动而不是被动接受;教师是学生在学习过程中的促进者而不是知识的授予者。这一教学模式要求学生具有良好的认知结构;要求教师要全面掌握学生的思维和认知水平;要求教材必须是结构性的,符合探究、发现的思维活动方式。[3]运用这一教学模式就能使学生主动参与到高等数学的教学活动中,使教师的主导作用和学生的积极性与主动性都得到充分的发挥。

(3)“情境—问题”教学模式,该模式经过多年的研究,形成了设置数学情境;提出数学问题;解决数学问题;注重数学应用的较稳定的四个环节的教学模式,模式的四个环节中,设置数学情境是前提;提出数学问题是重点;解决数学问题是核心;应用数学知识是目的。[4]运用这一模式进行数学教学,要求教师要采取启发式为核心的灵活多样的教学方法;学生应采取以探究式为中心的自主合作的学习方法,其宗旨是培养学生创新意识与实践能力。

(4)“活动—参与”教学模式,也称为数学实验教学模式,就是从问题出发,在教师的指导下,进行探索性实验,发现规律、提出猜想,进而进行论证的教学模式。事实上,数学实验早已存在,只是过去主要局限于测量、制作模型、实物或教具的演示等,较少用于探究、发现问题、解决问题等。而现代数学实验是以数学软件的应用为平台,结合数学模型进行教学的新型教学模式。该模式更能充分地发挥学生的主体作用,有利于培养学生的创新精神。[4]

(5)“探究式教学模式”,探究式教学模式可归纳为“问题引入—问题探究—问题解决—知识建构”四个环节。探究式教学模式是把教学活动中教师传递学生接受的过程变成以问题解决为中心、探究为基础、学生为主体的师生互动探索的学习过程。目的在于使学生成为数学的探究者,使数学思想、数学方法、数学思维在解决问题的过程中得到体现和彰显。[5]

(二)对高等数学传统教学模式的反思

1.教学目标单一

回顾我国高等数学传统教学模式可以发现,其主要的教学目标是知识与技能的培养,重视高等数学知识的传授多,与实际联系的少;关注学生数学知识点的学习,忽视数学素质的培养;强调了老师的主导作用,学生参与的少,使学生完全处于被动状态,不利于激发学生的学习兴趣。这不符合数学教育的本质,更不利于培养学生的创新意识和文化品质。

2.人文关怀失落

我们不能否认,传统的高等数学教学模式有利于学生基础知识的传授和基本技能的培养,在这种课堂教学环境下,由于太过重视高等数学知识的传授,师生的情感交流就很缺乏,不仅学生的情感长期得不到关照,而且学生发展起来的知识常是惰性的,因而体会不到知识对经验的支撑。这就可能滋生对高等数学学习的厌恶情绪,导致学生对数学科学日益疏离,也造就了一些学生缺乏人文素养、创新素质的理性人格。[5]在这种数学课堂教学中,教师始终占据主导地位,尽管也在强调教学的启发性以及学生的参与,但由于注重外在教学目标以及教学过程的预设性,很少给教学目的的生成性留有空间。课堂始终按照教师的思路在进行,这种控制性数学教学是去学生在场化的教学行为,在这样课堂上,人与人之间完整的人格相遇永远退居知识的传递与接受之后。这无疑在一定程度上造成数学课堂教学中人文关怀的失落。

3.文化教育缺失

高等数学文化知识不仅使学生了解数学的发展和应用,而且是学生理解数学的一个有效途径,从而提升学生的数学素质。数学素质是指学生学习了高等数学后所掌握的数学思想方法,形成的逻辑推理的思维习惯,养成的认真严谨的学习态度及运用数学来解决实际问题的能力等。[6]传统的高等数学教育过于注重传授知识的系统性和抽象性,强调单纯的方法和能力训练,忽略了数学的文化价值教育,对于数学发现过程以及背后蕴藏的文化内涵揭示不够;忽视了给数学教学创造合理的有丰富文化内涵的情境,缺少对学生数学文化修养的培养,致使学生数学文化素质薄弱。

三、基于数学文化观的高等数学教学模式的思考

(一)基于数学文化观的高等数学教学目标

数学是推动人类进步最重要的学科之一,是人类智慧的集中表达。学习数学的基本知识、基本技能、基本思想自然是数学教育目的的必要组成部分。数学的发展不同程度地植根于实际的需要,且广泛应用于其他很多领域,所以,数学的应用价值也是教育目的的一个重要部分。数学教育的目的,还有锻炼和提高学生的抽象思维能力和逻辑思维能力,使学生思维清晰、表达有条理。实现科学价值是数学教育一直不变的目标,但并不是唯一目标。数学的人文价值也是数学教育不可忽视的重要内容。在数学教育中,我们不仅要关心学生智力的发展,鼓励学生学会运用科学方法解决问题,而且也要关注培养有情感、有思想的人。同时,作为文化的数学,能够提升人的精神。[7]通过学习数学文化,能够培养学生正确的世界观和价值观,发展求知、求实、勇于探索的情感和态度。因此,笔者认为基于数学文化观的高等数学教育,就是要将其科学价值与人文价值进行整合。在数学文化教育的理论指导下,“基于数学文化观的高等数学教学模式”的教学目标为:以学生为基点,以数学知识为基础,以育人为宗旨,在传授知识,培育和发展智力能力的基础上,使学生体验数学作为文化的本质,树立数学作为一种既普遍又独特的与人类其他文化形式同等价值地位的文化形象,最终使学生达到对数学学习的文化陶醉与心灵提升,最终实现数学素质的养成。

(二)基于数学文化观的高等数学教学模式的构建

分析上述高等数学教学模式发现,虽然现代教学模式已经打破了传统教学模式框架,但学生的情感态度、数学素质的培养不是其主要教学目标。学习和研究现代教学模式的研究思想和方法,使笔者认识到构建数学文化观下的高等数学教学模式,并不意味着对传统的教学模式的彻底否定,而是对传统的教学模式改造和发展。这是因为数学知识是数学文化的载体,数学知识和数学文化两者的教育没有也不应该有明确的分界线,因此数学知识的学习和探究是数学教学活动的重要环节。立足于对数学文化内涵的理解,围绕基于数学文化观的高等数学教学目的,通过对高等数学教学模式的的反思和借鉴,本人逐步从多年的教学实践中归纳形成了“经验触动———师生交流———知识探究———多领域渗透———总结反思”的教学模式。[8]这一教学模式就是在教与学的活动过程中充分渗透数学文化教学,教师活动突出表现为呈现———渗透———引导———评述;学生活动突出表现为体验———感悟———交流———探索。

(三)对本模式的说明

(1)经验触动。学生的经验不仅是指日常的生活经验,还包括数学经验。数学经验是学习数学知识的经历、体验。要触动学生的日常生活经验和数学经验,教学中就要注重运用植根于文化境脉的数学内容设置教学情境,使学生从数学情境中获取知识、感受文化,促进数学理解,激发学生的学习兴趣和探究欲望。

(2)师生交流是指师生共同对数学文化进行探讨。数学文化教育的广泛性、自主探索与合作交流学习方式都要求师生之间保持良好的沟通。严格来说,“师生交流”不仅指教师和学生的交流,也包括学生和学生的交流。师生交流是模式实施的重点,当然,师生交流不会停留在这个环节,它会充斥于之后的整个课堂教学中。

(3)知识探究是数学文化教学的必要环节。数学知识是数学文化的载体,两者是相互促进、相互影响的。在感受数学文化的同时,对相关数学知识进行提炼、学习,就是从另一个角度学习和体悟数学文化,是对数学文化教育的一种促进。

(4)多领域渗透是指教师跨越当前的数学知识和内容,不仅建立和其他数学知识的内部联系,而且能够拓展教学内容,将之渗透到其他学科的各个领域,使学生感受数学与数学系统之外领域的紧密联系,从而使学生深刻地感悟到数学作为人类文化的本质。

(5)总结反思就是对整堂课做回顾总结,加深学生对所学数学知识的理解,加深对所体会的数学文化的印象,也为下次的数学学习积累经验,开创创新源泉。本教学模式是一种主要基于数学文化教育理论,以数学意识、数学思想、数学精神、数学品质为教学目标的教学模式。数学文化氛围浓厚的课堂、数学素养丰富的教师、学生学习方式的转变都是模式实施的必要条件。

四、高等数学教学模式超越和升华

在进行高等数学的教学设计和教学过程中,具有教学模式意识是对现代教师应有的基本要求,而对教学模式的选择,不是满足个人喜好的随意行为,而是根据教学对象和教学内容合理选择的结果。而根据教学对象和教学内容选择适当的教学模式,也不是生搬硬套,将某种教学模式简单地移植到教学中,将教学模式“模式化”,使教学模式变成僵死的条条框框,对教学模式的改造、创新和超越,才是创新教育的本质。[9]高等数学的课堂教学是一个开放的教学系统,课堂活动中学生的任何微小变化或不确定的偶然事件的发生,都可能导致课堂教学系统的巨大变化,这就需要教师实时、恰当的对教学方案做出调整。教学过程中的这种不确定性表明,教师需要运用教学模式组织教学,但更要超越教学模式。在教学过程中能灵活运用教学模式、并超越教学模式便是成熟、优秀的数学教师的重要标志。因此,成功的选择、组合、灵活运用教学模式,不受固定教学模式的制约,超越教学模式,走向自由教学,最终实现“无模式化”教学,就是优秀的高等数学教师追求的最高境界。

高等数学毕业论文 第4篇

关键词:微分方程 数值解法 双语教学 有限差分法

微分方程数值解法就主要研究如何通过离散算法将连续形式的微分方程转化为有限维问题,如代数方程组,进而来求解其近似解[1]。它以逼近论、数值代数等学科为基础,探讨有效的微分方程数值解法。主要包括求解区域网格划分、离散方程的建立、方程性能分析、近似解收敛性分析等环节。探索微分方程数值解法是有积极而重要的科学意义的,这是因为:(1)在实际应用中,我们只关心方程在某个范围内对应于某些特定的自变量的解的取值或近似值;(2)绝大多数情况下,无法找到方程的解析解,即使解析解存在也不一定能表示为显式解。微分方程数值解法在计算物理、化学、流体力学航空航天等很多工程领域具有广泛的应用。目前已发展成为一门计算技术学科,其核心理论内容也成为高校计算数学和应用数学等专业的核心基础专业课程之一[2]。

1 双语教学的必要性

现代社会的高素质专业人才不仅要具备扎实的专业知识,还须具备流利地应用英语进行沟通和交流的能力。双语教学是教育部积极倡导的一种课堂教学模式,在2001年公布的《关于加强高等学校本科教学工作提高教学质量的若干意见》中指出要“积极推动使用英语等外语进行教学”[3],主要是在课堂教学过程中采用母语和以英文为代表的多种语言教学。其目的就是为了跟上经济全球化的步伐和迎接科技革命的挑战。对高新技术领域中的诸如信息技术、生物技术、金融、法律等专业,力争三年内,外语教学课程达到所开课程的5%~10%[3]。2005年,在教育部颁布的《关于进一步加强高等学校本科教学工作的若干意见》中进一步要求高校要“以大学英语教学改革为突破口,提高大学生的国际交流与合作能力”,进一步明确了要“提高双语教学课程的质量并扩大双语教学的课堂数量”[4]。可见,国家教育部门对高校采用双语教学给予了相当的重视和期望。

微分方程数值解法既有数学上严密的逻辑性、独特的理论结构体系,又在各种工程计算中有着重要的应用,因此是联系纯数学理论和工程应用的桥梁和纽带。另一方面,很多数值计算软件开发平台和帮助文件都是用英文开发的,而数值微分各种理论算法又可以直接用伪代码表示,如何对数学专业英语很娴熟,那么应用这些数值计算软件就得心应手,亦可以熟练与国际同行交流。再者,该课程一般在高年级开设,通过大学两年的英语教学积累,大部分同学已经达到了大学英语四级水平,可以较容易的阅读数学专业文献。同时,高年级的同学对数学基础理论知识,如数学分析、高等代数、数值分析、常微分方程、偏微分方程等有了较好的掌握,继续接受方程的数值解的概念和理论是顺理成章的事情。因此,无论是实际工程需要还是学生自身素质,对微分方程数值解进行双语教学都是可行的、必须的。本文拟结合重庆理工大学信息与计算科学专业课程的设置,对微分方程数值解法的双语教学模式进行探讨,以寻求适合我校数学专业课程的双语教学模式。

2 课堂教学模式探讨和上机实验

英文概念词汇有助于学生获悉如何用英语表达我们常见的数学概念和定义定理等内容。同时也有助于学生进一步理解数学概念内涵和激发学生学习英语的热情。例如,第一章中对于常微分方程的向量场的概念,如果采用英文Vector field则更容易理解。对于Euler 法的重要基础地位,英文教材描述颇有味道:In a deep and profound sense, all the fancy multi-step and Runge-Kutta schemes are nothing but a generalization of the basic paradigm (yn+1=yn+hf(tn,yn),n=0,1,…)[5]。这句话既强调了Euler迭代公式的基础地位,进一步说明多步法(multi-step)和龙格-库塔法(Runge-Kutta)的新奇性和实用性。虽然Runge-Kutta法是Euler法的推广,但是其理论推导在短时间内不容易弄清楚,主要困难在于需要学生了解数值积分的代数精度概念、误差收敛阶,多元函数的Taylor展开,即如何灵活应用未知函数y(t)的各阶导数与右端函数f(t,y)的偏导数之间关系来对参数ki进行Taylor级数展开。

在实践教学方面,教育部对高校本科教学工作的若干意见中重点强调了要进一步加强实践教学,注重学生创新精神和实践能力的培养,切实提高大学生的实践能力,切实加强实验等实践教学环节[3~4]。所以,微分方程数值解法的计算式实验环节也需引起足够重视。通过计算机编程,有助于学生更好的理清各种算法的运算步骤,深入理解算法内涵,对掌握微分方程数值解法的学习方法能起到重要的作用。

3 存在的问题和总结

在教学伊始,学生的学习积极性并不高涨。主要是因为同学们接受新鲜事物有一个过程,心底里认为使用英语教学没有必要,课前预习不充分,不愿意花精力去记忆消化英文概念和理解英文句法。为达到较理想的教学效果,还需要学生在思想上高度重视。国外原版英文教材价格太贵,并且教材内容比我们教学大纲要多,我们必须有针对性地选择重点章节讲解,并不能面面俱到。受师资水平和学生英文水平限制,我们目前上课还无法使用英语口语教学。一是授课教师没有在国外高校进行过改门课程的讲授,口语不纯正;二是学生的专业数学概念词汇少和听力理解。这就要求在平时教学过程中,师生都要有目的的加强练习,及时发现问题并提出可行的解决方案并不断积累经验。

参考文献

[1] 黄振侃.数值计算-微分方程数值解[M].北京工业大学出版社,2006.

[2] 李荣华,刘播.微分方程数值解法[M]. 高等教育出版社,2009.

[3] 教育部.关于加强高等学校本科教学工作提高教学质量的若干意见[Z].2001.

高等数学毕业论文 第5篇

一、近年来高考试题中涉及工科高等数学知识的考题类型及难度分析

1、涉及函数与极限部分的试题

这部分试题大都以客观题的形式出现,分值不大,难度中等或较低,只需结合初等数学知识作简单整理和代入。但是学生必须熟练掌握简单极限的求法以及函数连续的定义。如(2009年陕西12题),(2009年湖北6题),(2011年四川5题)

2、涉及导数及其应用部分的试题

此类试题考试形式灵活,涉及导数的几何意义、单调性、极值、最值、不等式的证明以及实际应用问题等,所占分值在12分左右。客观题难度较低,主观题第二小问通常有一定难度,而且有些问题需要借助于高等数学的定理来证明(例6需要拉格朗日定理作依托)。完整解答问题需要学生具有良好的数学素养,能全面考察学生能力。如(2011全国大纲卷8题),(2010安徽17题),(2010辽宁21题),(2011福建18题)

3、涉及向量及其运算的试题

直接涉及向量内积、向量夹角、向量间关系试题多以客观题形式出现,立体几何中证明线、面平行、垂直、求动点的轨迹、最值等“动态”型问题通常以主观题形式考查且分值都在10份以上。主要考察学生用向量知识识把抽象的空间图象关系、空间中的点、线、面的位置关系转化为具体的数量关系,降低思维难度,淡化推理论证,简化思维过程的能力。如(2011安徽13题),(2011全国大纲卷19题),(2010江苏15题)

4、涉及定积分的试题

由于新课程标准的实施,涉及定积分制试点的试题出现在近年来全国新课标卷中,基本是以客观题的形式出现,分值不高,主要考查定积分的定义、几何意义以及简单的计算。如(2011全国新课标9题)

除了涉及高等数学的知识点外,高考命题越来越注重“能力立意”。增加了有关数学建模思想、数学算法思想以及数学探究等开放性试题,在考查学生一般数学能力(思维能力、计算能力、空间想象能力)的基础上,全面地测量学生观察、试验、联想、猜测、归纳、类比、推广等思维活动的水平以及抽象、概括并建立数学模型的能力。

为了做好高中数学到高等数学的过渡和衔接,我们就本课程的教学改革给出几点建议: 二、关于工科高等数学课程教学改革的几点建议

1、明确教学目标,优化课程体系,整合教学内容

工科数学教学的基本任务是为培养跨世纪的工程技术人才而服务,使他们具有必要的数学能力,以适现代社会知识爆炸与科技高速发展的挑战。因此,高校除了按照“工科院校高等数学课程教学基本要求”制订教学目标外,还必须将培养学生思维能力、应用能力和自学能力放在教学目标的第一位。课程体系与教学内容是实现教学目标的保障。课那么我们就应该对现有高等数学的教学内容作适当的修改和补充,对于高中已经讲过的极限、导数、向量以及定积分的知识作系统的复习和高等数学的解释,对于高中没有涉及的知识点作翔实的论证,补充与高等数学知识相关的实际应用模型案例及习题,增加数学软件应用的教学。

2、加强数学建模教学,提高学生的数学能力

高等数学的教学不能只讲定理和公式的证明和解题方法,而应当和实际联系起来提高学生分析问题和解决问题的能力。数学建模的思想和方法在这方面有很好的作用。模型准备是将实际背景转化为数学问题;模型假设是抓住问题本质,忽略次要因素,做出必要、合理的简化假设;模型构成是根据假设用数学语言和符号建立反映事物内在规律的数学模型;模型求解是利用各种数学方法以及数学软件求出模型的解;模型分析是对所求解作误差分析;模型检验是将问题的解与于分析结果拿到实际背景中去加以验证,检验模型的合理性与实用性;模型应用就是将反复修改的模型应与于实际。因此,教师有意识的选取一些与教学内容密切结合的实例,将数学建模的思想方法有机的结合到课堂当中,不但可以加深对数学概念、方法的理解,而且也有利于学生的应用意识和数学素养的提高。

3、增加数学软件教学,开设数学实验,提高学生的理解能力和应用能力

高等数学的概念和定理比较抽象,要提高学生的兴趣,加深对概念和定理的理解,就需要重现概念和定理产生的过程,将抽象的概念形象化,数学实验的开设为我们提供了再现数学概念和定理的可能。另外随着科技水平的不断提高,数学和各学科的联系越来越紧密,马克思说“一门科学,只有当它成功地运用数学时,才能达到真正完善的地步”。数学模型的地位越来越明显,而数学模型的求解、分析和验证的过程大都是借助于数学软件和计算机来完成的。因此,增加数学软件教学就相当于给工科数学的教学添上了有力的翅膀,这双翅膀使数学问题的求解更精确更快捷,为学生解决实际问题提供了强大的武器。

高等数学毕业论文 第6篇

Liu Jing

(渭南师范学院,渭南 714000)

(Weinan Normal University,Weinan 714000,China)

摘要: “数学教学论”对中小学数学教师培养起着至关重要的作用。本文就高师数学教学论课程存在的问题、课程定位和课程内容设计进行了分析,并提出案例实践教学的建议。

Abstract: Mathematics Pedagogy is characterized by teacher cultivation, which plays a important role in primary and secondary schools. On the basis of analysis of problems in the teaching of Mathematics Pedagogy, the paper discusses its curriculum position and design, putting forward some suggestions on practical teaching system.

关键词: 师范院校 数学教学论 课程

Key words: Normal University;Mathematics Pedagogy;curriculum

0引言

随着高等教育适应社会需求的呼声不断高涨,不少“师范学院”摘除了“师范”的称谓以吸引生源,出现师范特色弱化的现象,展开了一场史无前例的转型变革。然而,在今后相当长的时期内,高等师院院校仍是培养教师的主体。因此,在寻求自身有效发展的同时,注重突显原有的师范教育优势是师范类院校赖以生存的基础。

1“数学教学论”课程建设的必要性

“数学教学论”是高师数学教育专业的必修课,帮助学生了解数学教育的相关理论、掌握数学教学技能、熟悉数学教材编写与逻辑体系,为成为一名合格的数学教师做准备。师范院校在学科教学论课程上有着非师范院校难以比拟的优势,如师资力量和教材资源储备方面。然而,高师院校中不同程度的课程定位迷失,使得“数学教学论”难以摆脱尴尬困境。其课程弱化主要表现为三个方面:一、教材内容陈旧。现今12年基础教育已发生重大变化,数学教学论所举案例缺乏时代性。虽然部分繁难内容已经弱化,但是在课本中仍着重强调,与中小学数学教学脱节。二、数学教学论没有形成独特的学术风格,大部分以普通教育学理论为主。过多的文字陈述使学生认为数学教学论与一般教学论课程无太多区别,游离于“教育学”、“心理学”之间。三、学时不足。据调查,一般占师范院校总课时量的8%左右,而发达国家一般在25%左右。因此,数学教学论课程改革是不容缓。

2“数学教学论”课程的设计思路

重视“数学教学论”课程建设,是与时俱进、符合时代对师资培养的要求,既有助于强化师范专业优势,又增强毕业生的有效就业竞争力。

课程定位关于“数学教学论”的课程定位,有两种不同的看法:一种认为该课程应偏重理论,其主要目的在于提高师范生的数学教育理论素养。另一种则偏重实践,认为合格教师必须具备未来从事教师职业的教学技能。通过研究表明,对教师专业发展起决定作用的是教学实践性知识,包括教育信念、自我认知、对学生的知识、教学策略性知识与批判反思知识。因此,“数学教学论”逐渐代替了“中学数学教材教法”课程,由以往的注重“教材教法”转变到注重“理论与实践相结合”。由此可见,实践智慧是教师专业化的本质,也是通向教师教育的有效途径。数学教学论课程具有理论性、实践性,是一门理论与实践紧密结合的综合性课程。

课程内容设计“数学教学论”课程的教学目标旨在通过了解国内外基础教育阶段数学课程改革的历史、现状和发展趋势,深入理解数学课程改革的动因、基本理念、全日制及高中数学课程标准,激发学生对从事数学教学的兴趣。“数学教学论”课程的教学内容确立应考虑结合典型案例呈现教学理论,突出数学学科特点。传统教科书中理论过于泛化,有些教材只注重面面俱到地描述教育学一般原理而脱离实际课堂。因此,现有教材内容应精选反映数学学科特点的数学教育理论,配以教学范例加以呈现,加强学生的数学素养和文化素养,帮助学生找到支持数学课程改革和优秀教学案例的理论,增进学生对数学教育教学原理与方法的理解和体验。“数学教学论”涵盖的内容比较多,根据教学目标的需要可分为如下四部分:第一部分是国内外基础教育数学课程改革简介。这部分内容主要帮助学生了解数学课程改革的沿革和趋势;第二部分是数学教育学基本教学理念、教学模式。讲授该内容的目的在于将教改成果以及学科最新发展成果引入教学,提高学生理解数学教育过程的能力。例如,在学习数学教学原则时,将案例材料用PPT展示给学生,提出相关问题以供思考:“关于数学教学原则有哪些阐述?为什么数学教学原则的阐述各有不同?案例片段中遵循了哪些数学教学原则?”。提问的其目的在于通过师生互动、生生互动,让学生学会运用数学教学设计的原理和方法,掌握案例教学过程和评价方法;第三部分是数学学习心理、数学思维发展、数学教学方法数学课堂技能。通过数学教育经典理论、数学教学设计、教学过程组织、课堂教学观摩和教学研究等,增进学生对中小学数学教学过程的系统理解,加强创造性教学设计的能力,培养基本的数学教育研究能力;第四部分是数学文化与数学史。通过对数学文化、数学史的讲授,让学生了解到数学是打上人类烙印的文明成果,蕴含着丰富的思想文化内涵,而不是单板的逻辑演绎体系,改变学生对数学的认识。

建立系统的实践教学体系经研究表明,准教师在教学实践环节得到的经验对于今后教学有着非常积极的作用。“数学教学论”课程应充分运用课外实践、微格教学等手段开展教学实习、说课等活动。上述实践环节的内容包括教案编写、课堂教学观摩与评析、教学技能演练。例如,在“教学模式与数学教学方法”这部分中,教材中选用了5个案例。比如:弗赖登塔尔“巨大的手”和“平行四边形教学”等。“教学设计”这部分则选用了7个案例,如“一节拖堂的公开课”、“同一个教学内容的不同命运”等。“数学思想方法的教学”选用了5个案例,如“为什么扣两分”、“一次意外的导入”等。通过上述案例引导学生体悟案例中所蕴含的教学思想、教学行为,甚至包括情感、态度和价值观等,使学生形成自身的教学实践性知识。

参考文献:

[1]王林全.高师数学教育课程改革的实践与认识[J].数学教育学报,2001,(5):88-90.

高等数学毕业论文 第7篇

关键词:论文式合作学习 高等数学 教学思考

合作是人类生活不可或缺的一部分,中国传统儒家文化所主张的“和而不同”就是一种合作关系。合作学习(cooperative learning)是指学生为了完成共同的任务,有明确的责任分工的互学习,它鼓励学生为集体的利益和个人的利益而一起工作,在完成共同任务的过程中实现自己的理想。自20世纪70年代初兴起于美国,并在70年代中期至80年代中期取得实质性进展的一种富有创意和实效的教学理论与策略。由于它在改善课堂内的学习气氛,提高学生的社交能力,尤其是合作能力与责任感,促进学生形成良好非认知品质等方面实效显著,如今在我国新一轮基础教育课程改革(简称,新课改)中,合作学习已经成为目前中小教师广泛使用的教学方法。

在我国高校,目前讲授法还是一枝独秀,在课堂教学中占据统治地位。随着大量在新课改下培养的学生进入高校,势必也需要我们转变传统教学方式和方法,与时俱进,以适应目前新的形势。根据《高等数学》课程的特点、教学任务和学生特点建构最恰当的合作学习方式是我们要做的具体工作。该文介绍一种具体的数学合作学习方法―― 论文式合作学习,以期对教师更好地在高等数学教学中实现合作学习,促进学生的数学学习有所帮助。

1 高等数学课程的特点

高等数学是高校理工科专业必修的一门重要基础课,它不仅是学生进校后首先面临的一门重要课程,而且大学本科乃至研究生阶段很多后继课程在本质上都可以视为它的延伸,深化和应用。它的课程特点融基础性、应用性为一体,对培养学生的数学思维能力、创新能力,以及应用数学知识解决实际问题的能力都有着非常重要的作用。从教学的角度看,高等数学这门课有如下特点。

内容抽象

初等数学研究的对象是常量,以静止的观点研究问题,而高等数学研究的对象是变量,运动和辩证法进入了数学。相对中学数学中所涉及的数学概念而言,高等数学中的数学概念较为抽象。比如,数列极限的epsilon语言是高等数学课程中最先接触的一个概念,亦是课程最基础、最难理解的一个基本概念,往往学生在开学前几周的学习中,既不知道老师在教什么,也不知道自己在学习什么。

识点多

中学数学的学习,往往是讲完一个知识点,接着配合大量的练习,对同一个问题反复讲解多次,直到班上几乎所有的学生都掌握,再开始下一个知识点的学习。反观大学数学的教学,由于内容多,课时少,经常是一节课要完成多个知识点的讲授,而且下一次课又要开始学习新的知识点,较少对一个问题反反复复多次讲解。

教学课时少

由于客观原因,目前高等数学的教学课时与教学内容相比较明显偏少。以广西师范大学高等数学教学大纲为例,《高等数学》一类,计划课时90,要求完成同济第六版高等数学第一章至第六章的课程内容。如果还要考虑一些假期及学校活动,要完成上述教学任务是非常紧张的,这势必导致教师,马不停蹄的赶课。

2 论文式合作学习

论文式合作学习是指教师带领学生开展社会调查实践,并指导学生以论文的形式汇报社会实践的结果。其特点为:一是,学生合作学习的时间和地点灵活,不必局限于课堂有限的教学时间;二是,培养学生查阅科学文献,完成论文的能力。在此就论文式合作学习的步骤进行介绍。

选题

选题是论文式合作学习的关键之一,这一部分的工作应在教师的指导下完成。在选题时必须注意以下两点:一是,所选的课题必须与教学内容密切相关,不能脱离课本;二是,要能引发学生的足够兴趣,并具有一定的难点,但是这些难点是可以工作小组之间的密切合作突破的,单独一个成员尝试探索能取得一部分的进展,但不能轻而易举解决该问题。根据在高等数学中的实际教学经验,我们选择“投资的效益和风险”作为题目。该题目与课本第三章第五节教学内容密切相关,并且包含如何进行组合投资的实际问题,能引起多大数学生的兴趣。

训练

布置题目后,需要对学生如何利用科学文献,完成论文进行必要的训练。主要包括以下三点:一是,如何利用学校学术资源收集和整理相关的科学文献;二是,一个合格的论文应该包括几个部分及各个部分的写作规范;三是,介绍一些相关的数学工具软件。

分组

一个学习小组应该是一个集体的缩影。因此,在创建合作学习小组时,应该在学生自愿的基础上,根据学生的数学能力、计算机能力、性别等综合评价,然后搭配形成组内异质,组间同质的学习小组。合作学习小组的组长,由组员民主选举产生。根据我们在指导大学生参加数学建模比赛的经验,选定3人形成一个合作学习小组,每个小组由数学能力强、会应用计算机、写作好的学生组成。

课外辅导

在完成研究内容布置、训练和分组后,教师还应当在课外抽出一定的时间辅导学生。这是因为对大一新生而言,这是他们第一次以合作完成论文形式开展学习,需要有经验的教师给出合理的建议和提示。

学习评价

学生以提交论文的形式完成学习任务。教师作为合作学习的观察者、评估者应对完成论文给出评价。评价的成绩分为优秀、良好及合格。在实际操作中,严格控制优秀率,杜绝论文抄袭现象,对未完成论文的学习小组,教师应了解其中的原因,但不给予任何的惩罚。

3 对论文式合作学习的思考

论文式合作学习的最大特点是学生合作学习的时间和地点灵活,不必局限于课堂有限的教学时间,这有助于在有限的教学课时情况下,既完成教学任务,又促进学生的数学学习与提高他们的论文写作技能。通过我们在教学过程中的实际应用,学生对这样的教学方式普遍表示欢迎。但是,如果想成功地通过论文式合作学习方法促进教学、改进高等数学的学习并不是一蹴而就的事情。因为,论文式合作学习方法并不是完美的。如果想利用论文式合作学习方法有效地服务于高等数学的教学,应该在发挥其特点的同时思考、改善其中的一些问题。在这里,主要就3个问题提出一些想法和建议,也希望同行能参与到问题的探讨中,从而在教学中成功的运用论文式合作学习方法。

学习任务的类型

合作学习最重要的特征就是学生小组活动。因此,整个学习过程基本上是由学生自己完成的,但是由于学生知识的广度与深度、思维水平毕竟还是有限的,这势必导致学生在一般情况下,无法独立的完成论文的写作任务。由此,数学概念和基础定理证明等较抽象的内容是不适宜作为论文的选题。我们建议学习任务应该遵循如下两点:一是,与教学内容相关,并且是应用型、实践型的数学知识,比如,函数的极值问题;二是,学习任务要与社会的实际问题密切相关,能够引起学生的兴趣,因为兴趣是完成学习任务最大的推动力。目前,大学新生对高等数学的学习兴趣不高的一个主要原因就是不知道学了数学有什么用。如果学生能自己运用数学知识解决一些实际的问题,那么对他们后续学习高等数学知识是很有帮助的。

合理的分组

对学生分组应遵循组内异质,组间同质的小组编排方式,这样更有利于学生间的优势互补,小组的人数一般以4~6人一组为宜。在实践中,我们结合数学建模的经验,从学生的数学能力、计算机能力和写作能力3个方面出发,建议以3人为一组,开展论文式合作学习。同时,我们也注意到,由于现在高等数学教学普遍是合班上课,一般情况下,一个普通教学班人数在100人上下,那么3人为一组的分发,势必导致组数较多,教师在课外辅导的压力增大,而增加每组人数也会存在少数学生出工不出力,吃大锅饭的现象。因此,教师在开学初期就有必要迅速的对全班学生的数学水平和计算机水平有一个全面的了解,这样才能较好的实现组内异质,组间同质的小组编排方式。我们建议在开学初期,以调查问卷的方式完成学生数学水平和计算机水平的了解是较合适的一种方式。

教师的作用

与目前传统教学模式相比,合作学习有重大变化的一个方面,一方面,教师的观念应当转变,教师不再是统包一切的权威,而是要建立平等、民主的师生互动关系;另一方面,教师在合作学习中同时扮演权威、顾问、同伴3种角色[1]。我们认为,无论是何种教学模式,教师的作用都是不可轻视的。在论文式合作学习这种教学模式中,教师的作用主要从三个方面体现:

(1)教师是合作学习环境的设计者。在合作学习设计过程中,教师应当考虑多方面因素,以便实现合作学习目标例如,最适合学习材料的合作学习方式的选择等等[2]。

(2)教师是学生的顾问。教师要做好学生的顾问工作,在课外辅导中,需要耐心给予相关数学知识的解释,传授科学文献的阅读的技巧和经验,及时了解每个小组论文完成的进度和存在的问题。

(3)教师是论文的评价者。由于学生是独立的完成有一定难度的论文工作,因此,教师在评价中不必对论文的质量作过高的要求,主要以学生是否完成论文为主要考核指标,一定要杜绝论文抄袭现象的发生。

总之,教师就是要保证学生利用课外的时间开展合作学习,通过论文式合作学习,运用课堂上学习到的数学知识,进行数学思考,解决实际的问题。

参考文献

高等数学毕业论文 第8篇

1.文科高等数学教学的现状

作为高校,结合我校文科生的现状,现在文科高等数学教学上存在以下一些问题:

文科生个体差异性较大、数学基础比较薄弱。高等数学具有运算复杂、内容抽象、应用广泛等特点,因而大部分文科生在潜意识中对数学存在畏难心理,加之近年高校的不断扩招,生源质量得不到保证,学生整体素质下降已成为一个不容忽视的现实。还有相当一部分文科生之所以选择文科专业是因数学成绩不理想,他们普遍认为数学单调乏味、难于理解,无形中就更增加了文科生学习高等数学的难度。

文科生在学习高等数学过程中缺乏学习兴趣、学习动机不明确。数学学习动机直接推动学生进行数学学习,它是学生个人的心理需求、企图达到目标的一种内在动力。现实中,数学科学与人文科学的联系越来越密切,数学里面处处显现哲学等人文科学。教师要向学生讲明两者的辩证关系,在教学中不断激发学生的学习动机和兴趣,逐步培养良好的学习习惯与方法。

教学方法简单、形式单一。文科高等数学是近些年才开设的基础学科,教师大多是从理工科教师中挑选的。这些教师虽然具有丰富的经验,但对文科生的专业不很了解,对文科高等数学的教法还不熟悉,教学难以突出重点,且与学生专业内容联系少,引不起学生的学习兴趣。在教学实践中,不能遵循“学生为主体、教师为主导”的教育理念,对深奥的定理、抽象的概念讲得过多,以致学生学习兴趣降低、教学效果较差。

课程设置和教材内容还需进一步完善。教材的质量直接影响到教育质量的高低。当前,文科高等数学课程没有通用的教学大纲,虽然目前教材的数量很多,但适宜文科生特点的教材很少。大部分是以理科高等数学为模本,通过简单改编而成。教材中的内容多而杂,语言生硬抽象、难以理解,与许多文科专业联系少、缺乏实用性。许多教师在教学过程中只专注讲解教材内容,而缺少背景介绍和联系实际应用。

2.文科高等数学教学的对策探究

文科生的特点和需求

从对沧州师范学院级文科类开设高等数学课程的市场营销、旅游管理、金融保险等专业调查问卷的统计数据看,文科生中比较喜欢数学的占42%,文科专业学生中认为目前所学的高等数学内容比较难的占57%,学习高等数学比较吃力的占71%。从调查中我们发现“降低难度”“提高趣味”的比例较大,因此我们必须在这些方面下功夫、做文章。文科生的专业特点决定了高等数学在知识层面上不宜对学生有过高的要求,更不能成为他们学习的负担。文科高等数学的教学要放弃单纯的理论灌输,教材内容必须考虑思维方式的培养、数学知识的结构优化,还要涉及文科生的专业特点,可以将一些应用较广的内容补充进来。例如:要开设微积分、线性代数、微分方程等课程。微积分是高等数学教学的基本内容,也是许多课程的基础,应用广泛而深刻,这点必须向学生重点介绍。对于一些必要的计算,线性代数的应用比较广泛,特别是对金融经济学专业学生来说更为重要。还可以利用数学建模做些探索性的尝试,形成边学边用的学习环境。

教学目的

根据当今社会对高素质人才的渴求及文科生未来要从事的工作,结合高等数学学科的历史特点、发展趋势和作用来看,设置文科高等数学的目的大致有两个方面:一是培养与增强文科生的理性思维、能力,提升文科生的整体素质;二是理解与掌握高等数学的基本思想、方法和内容。在这两方面中对文科生来讲应以前者为重,后者是前者的基础,前者只有通过后者才能实现。一个人若具备良好的数学素质,可以更好地利用科学的方法和思维分析解决实际问题,提高创新意识、能力。随着计算机的出现和IT产业的飞速发展,各门学科的融合、量化趋势更促进了数学与其他学科的结合,这就要求文科生也应具备一定的数学素养。

将数学文化融入教学,激发学生兴趣

俗话说:兴趣是最好的老师。兴趣能激活人的思维潜能,让人主动去学习,并使人更多地接触该领域的内容。依据文科专业的特性和学生自身特点,将数学文化融入到文科数学教学,不仅丰富教学内容更能激发学生的学习兴趣。数学文化主要是指数学的思想、精神和方法。文科生不擅长抽象、逻辑思维,而发散、形象思维较好,分析综合问题的能力和论证问题的能力较差,但对事物较敏感且具有文学知识的优势等特点。在教学中尽可能将数学史融入其中,有很多以数学家的名字命名的定理,比如柯西定理、费马引理等,在讲这些内容时,都可以把背景知识介绍给学生,并尽可能将数学语言文学化、艺术化,使学生在学习数学分析、论证方法和理性思维的同时,感受到高数的魅力,不仅能掌握数学的精神、思想和方法,提高思维逻辑能力,同时也可以开阔眼界,激发他们的学习兴趣。

采取多种形式和手段丰富教学内容,调动学生积极性

数学家哈根莫斯说过:“最好的学习方法是激励学生自己去动手、去思考,而不是讲清事实。”因此,在课堂教学中应采取精讲与勤练相结合的教学方法,让学生多分析和思考、多提问题,并通过调查问卷等形式及时反馈学生的意见,不断完善教学手段,以充分调动学生的积极性。可以借助多媒体技术使课堂教学变得更加生动和直观,内容上也更具感染力和表现力。例如:在讲授二重积分时,可先从讨论计算曲边梯形的面积之间的关系引出二重积分与曲顶柱体体积的关系,再利用多媒体使曲顶柱体划分为小曲顶柱体的过程更直观化,激发学生的学习兴趣。另外,多关心学生的学习和生活,多采用鼓励的方法促进教学,也会收到意想不到的效果。

摒弃单一评价方式,建立多元化评价体系

当前,高等数学的考试方式一般是以闭卷考试为主,兼顾考查上课出勤及平时作业情况。这种评价方式存在的一大弊病就是以试卷成绩决定学生的学习情况。这样就会导致学生只知考前突击、死记硬背,而不注重日常学习和积累。这种评价方式与我们的教育目的相悖,既不能反映学生t的真实水平,也不利于提高学生的数学素养,更难以调动学生的学习热情。为了培养学生创新意识和提高数学应用能力,我们必须摒弃单一评价方式,对其进行合理优化,将考核方法改为闭卷和开卷相结合的方式,例如:用提交论文的形式把考查目标融入相应的实际问题,教师只负责指导,而让学生利用各种方式亲自动手搜集资料、寻找适当的解决方法,以此来考查学生对高等数学知识的认知程度和数学在各知识领域中的应用能力。

高等数学毕业论文 第9篇

不定积分是大学数学中非常重要的知识,但是当今许多大学生学习不定积分的时候,感觉学习和理解的难度很大,所以不定积分有一定的研究价值。

不定积分是导数运算的逆运算,要想学好不定积分,必须要理解原函数f(x)的意义,知道原函数的性质,学会求简单的原函数。

然后就是理解不定积分的概念,掌握不定积分的线性性质,学会定义求简单函数的不定积分。

本文研究了不定积分的几种解题方法,在前人的研究成果上作进一步的探索与探究。

社会在不断的进步,许多高科技的技术,都涉及到不定积分,研究不定积分也是社会发展的需要。

人类在17世纪的时候就发现了微积分,当时被誉为人类精神上的重大发现。

后来人类创立了微积分学,专门研究微积分,是数学有了重大发展和进步,解决了许多以前人们无法解决的数学问题,可见微积分在数学中的重要地位,而不定积分是微积分中最基础的知识之一,也是最重要的知识之一。

人们常用的不定积分的解题方法有:一、利用不定积分的定义性质和基本积分公式求不定积分;二、利用换元积分法求不定积分;三、利用分部积分的方法求不定积分;有时有一些特殊函数也有一些特殊的解题方法,例如有理函数和无理函数,可以用有理函数的积分法和无理函数的积分法。

由此可见前人对不定积分的解题方法和思路有了一定的研究成果,但是后人也不会停下脚步,继续研究下去。

不定积分的解题方法和思路有很多种,这就要求学生有很高的抽象思维和逻辑理解能力,而且学生在学习不定积分的过程中计算和理解的难度比较大,很多老师讲课的时候,学生根本就没听懂,所以对不定积分和不定积分的计算方法的研究,不管是从客观需求还是客观实际上都有着必然的研究需求。

选题背景和意义:

不定积分不仅是整个积分学和积分变换的基础,而且也是求解微分学方程和积分方程等必不可少的知识工具。

不定积分还是微分学和定积分之间的联系纽扣,不定积分的计算方法也是多种多样。

不定积分计算的困难首先是由其定义和概念本身带来的,因为不定积分是求导的逆运算,,所以就造成它的计算是非构造性的一类运算,运算起来比较困难,因此正确的运用不定积分的计算方法很重要,要从被积函数的特点出发,从不同角度去思考。

计算不定积分的时候,有很多技巧性和灵活性的运用,方法越多,解题的思路就越开阔,慢慢的积累解题经验,研究解题规律,提高我们的逻辑思考能力。

这就是选题的意义所在。

研究目标与任务:

一、研究目标

研究不定积分的计算方法,总结和归纳最基本的不定积分的计算方法,从而发现规律和一些解题技巧,而不定积分的基础就是常见不定积分的解题方法,要根据不同的题型的特点用不同解题方法,遇到题目仔细分析,达到熟练运用不定积分的计算方法,并且能灵活运用那几种巧妙的解题方法,这就是研究的目标。

二、研究任务

1、利用不定积分的定义概念和基本积分公式求不定积分

2、利用换元积分法求不定积分

3、利用分部积分法求不定积分

4、有理函数积分法

5、无理函数积分法

6、特殊不定积分的计算方法——利用倒代换求不定积分

三、研究方法

归纳总结法﹑网络搜集法﹑参考文献法﹑独立思考法﹑教师指导法。

四、研究进度工作

20XX年1月至2014年2月,阅读有关数学方面文献资料,与指导教师拟定题目、

20XX年3月,搜集与论文相关的文献资料,拟定论文设计思路,填写《湖北师范学院文理学院毕业论文(设计)开题报告》,交指导教师和院系指导委员会审核批准、

20XX年4月到5月上旬,撰写论文初稿,及时与指导老师联系,汇报写作进展,遇到难以解决的问题应及时向指导老师请教,完成初稿,交指导教师审阅、

20XX年5月中旬 接受指导教师修改意见,反复修改,最后定稿、

20XX年5月下旬至6月上旬 准备毕业论文答辩,答辩结束后,把毕业论文正本和各种表格装进档案袋。

五、参考文献

1.同济大学数学教研室.高等数学[M].高等教育出版社,2008.

2.华东师范大学数学系.数学分析(上册)[M].3版,北京:高等教育出版社,2001.

抱歉,评论功能暂时关闭!