纳米材料论文3000字(必备6篇)

个人学习 16 0

纳米材料论文3000字 第1篇

1 纳米材料的研究现状

近年来,科学技术发生了飞速发展,各种新兴产业和新兴科学技术应运而生,为了满足各个领域的快速发展,纳米材料受到越来越多的关注和重视,各国科学家都在研究纳米技术的基础理论知识,同时相关纳米技术在许多行业中已经得到广泛应用和实施,比如:电子电子行业、医疗行业等等,并向产业化的方向逐渐迈进。在美国、日本等国家纳米材料已经得到批量的生产,但是纳米材料的未来发展还需要科学家们不懈的努力和研究,研发和发展的道路任重而道远,尤其是纳米医疗诊断材料和纳米生物材料还需要不断的创新和发展。相关机构曾这样预测过:不到十年的时间,全世界纳米新材料市场便会达到87 亿美元的规模,整个行业便会有的年增长率。

社会对纳米材料的需求不断增加的同时,世界各国纷纷投入到纳米材料的研发中, 政府和企业大量人力和物力的投入,使纳米材料的发展达到了一个新的高度,纳米材料的市场规模不断的扩大。

在美国,纳米材料被广泛应用在军事、国防、航空航天等多个领域,因而美国将纳米材料的研究和发展作为一种国家战略层面的科研项目。事实证明,纳米材料具有优良的性能,已经被社会各界认可,随着纳米材料的不断研发,农业、医疗、生物等领域正在逐渐实施纳米技术,创造巨大的经济效益。

在世界各国中,我国对于纳米技术的研究并不算晚,当前,我国共有一百多个研发机构在进行纳米材料基础和应用的相关研究。这些研发机构主要是我国的一些高校和研究所,其中高校中开展较早的主要有:清华大学、东北大学、吉林大学等经典大学,研究所中开展较早的有:长春感光化学研究所、应用化学研究所等。通过各界不谢的努力和研究,近几年来,我国纳米材料的发展有了新的突破和发展, 并取得了丰硕的研究成果。研发过程中,应用的方法主要有物理法、化学法及多种方法相结合的复合法,从而研发出一系列金属和合金的氮化物和氧化物的纳米颗粒; 同时我国向纳米材料研发先进的国家学习,不仅学习其完善的纳米技术,而且引进我国不能自主生产但对于纳米材料的生产和发展不可或缺的设备,对纳米材料的颗粒大小进行微细的调控, 将这些研发成果广泛应用到生产当中,从而生产出相应的高科技纳米产品,比如:纳米块材、纳米薄膜等等;对纳米材料进行广泛生产的同时,又积极发掘原有纳米材料的新特性,在各个角度对纳米材料进行创新和发展,收到了成效,比如:我国已经成功研发出纳米陶瓷,这种纳米陶瓷具有优良的性能,密度高且结构复杂;同时,对于超塑性形变现象的发现,我国在世界上属于先锋,超塑性形变现象即在拉伸疲劳应力集区所表现出的纳米氧化铝晶粒特性;另外,我国在其他纳米材料的相关研究中也取得了不错的成绩,比如:我国深入研究功能纳米材料,并看到了相应的成效。

随着社会对纳米材料需求的不断增加,我国在_八五_研究工作的基础之上,又建立了许多研发基地,其中最重要的主要有:中科院金属所、南京大学、中科院物理所、清华大学及国防科技大学等。这些纳米材料基地的建立为我国纳米技术的发展提供了基础条件。通过近几年来不懈的努力和研发,我国在纳米材料的研发领域取得了一定的成果,在众多的发达国家中,我国已经具有一席之地。新的时期,我国的科研院校和研究所对纳米材料的研发做出了重要贡献,不仅提供生产纳米材料的技术,同时提供高质量的科研学者, 使纳米材料更加广泛的应用于生产中,促进了科研成果向工作和生产中的转化。在未来的发展中,这些科研院校和研究所是我国纳米材料发展的动力。

2 纳米材料发展的未来趋势

纳米技术与信息产业的融合

进入二十一世纪后,信息产业在社会的发展中具有不可替代的作用。到2010 年,信息产业在我国GDP 中所占的利润已经达到10%。将纳米技术融入到信息产业主要表现在以下几个方面:近年来网络通讯、高清晰度数字显示技术及芯片技术飞速发展,便相应的推动了纳米技术的发展。而且在未来几年中,世界对于网络通讯和显示集成等方面的设备性能要求会不断的增加,许多国家已经开始研发纳米材料,并有了不错的成效。再者, 我国在网络通讯方面跟其他发达国家还存在一定的差距,应该对网络通讯的关键零件进行研发,比如:微电容、谐振器及微电极等,在进行纳米材料的研发过程中应提高这些零件的性能,我国在网络通讯方面上的不足为纳米技术和信息产业的融合提供了合理的空间。

纳米技术与环境产业的融合

随着科学技术的不断发展,环境污染问题已经成为世界各国关注的话题,纳米技术可以有效应用在污染物的降解及空气的净化上, 因而纳米技术在环境的保护方面有着重大的意义。近几年来,随着我国污染程度的加大,已经研发出了可以成功降解氮氧化物、甲醛等污染物的相应纳米设备,空气的污染程度大为降低,将空气中的有害成分从10ppm 降到了。同时纳米技术也应用到了水污染的治理当中,很多企业应用纳米技术的光催化性质使污染的水质得到净化, 在未来的发展中,纳米技术在环境污染上的应用将会更加普遍。

纳米技术与生物医药产业的融合

进入世贸组织对我国许多行业造成了不同程度的影响,尤其是医药行业,在纳米技术的研发背景下,我国决定不断发展,奋起直追。纳米生物技术在医药上的研发主要是:在动植物中提取有益于人类健康的材料,再经过纳米技术,使这种材料的作用充分发挥出来。同时在医药行业应用纳米技术,可以使纳米技术的适用层次得到提高。

纳米技术与能源环保产业的融合

随着世界人口的不断增加, 各种能源逐渐出现耗竭的状态。因而, 目前我国最重要的工作便是合理有效的使用和开发资源,同时研发出能够取而代之的新能源。在传统能源方面,应该运用纳米技术使其充分利用,同时减少相应废弃物的排放。在新能源的研发方面,在借鉴发达国家先进纳米技术的同时,也要不断的创新,开发出一系列可燃气体等较清洁的能源,较少传统资源的过度使用和浪费,使新资源广泛的应用于人们的日常生活当中。

运用纳米技术对传统产业进行改造

运用纳米技术对传统产业进行改造并完美结合,是当前传统行业再度复兴的希望。比如,我国传统的纺织行业,国际上激烈的竞争已经严重打压了我国的纺织业,因而纳米技术应该应用在纺织材料领域, 这样才能使衣服的品质和质量得到提高,使我国的纺织行业在国际上占有一席之地。

纳米材料论文3000字 第2篇

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。_汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家r成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

纳米材料论文3000字 第3篇

纳米科技发展态势和特点_(转) 科学界普遍认为,纳米技术是21世纪经济增长的一台主要的发动机,其作用可使微电子学在20世纪后半叶对世界的影响相形见绌,纳米技术将给医学、制造业、材料和信息通信等行业带来革命性的变革。因此,近几年来,纳米科技受到了世界各国尤其是发达国家的极大青睐,并引发了越来越激烈的竞争。 一、各国竞相出台纳米科技发展战略和计划 由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。 (一) 发达国家和地区雄心勃勃 众所周知,为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。 曰本政府将纳米技术视为“曰本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,曰本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。 欧盟在2002~2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。 (二) 新兴工业化经济体瞄准先机 意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和曰本等领先国家的水平,进入世界前5位的行列。 中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。 (三) 发展中大国奋力赶超 综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。_在2001年7月就发布了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印对箕府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。 二、纳米科技研发投入一路攀升 纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。 美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的亿美元增加到2003年的亿美元,2005年将增加到亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括_及其他部门将用于纳米研发的经费。 曰本目前是仅次于美国的第二大纳米技术投资国。曰本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。 在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达亿美元,有些人估计可达亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。 中国期望今后5年内_的纳米技术研究支出达到亿美元左右;另外,地方政府也将支出亿~亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为亿美元,而新加坡则达亿美元左右。 就纳米科技人均公共支出而言,欧盟25国为欧元,美国为欧元,曰本为欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,曰本2004年增加到8欧元,因此欧盟与美曰之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为,美国为,曰本为。 另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年发布的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资亿美元,占17%。由于这样的投资水平,基于纳米技术的创新势必将到来。 三、世界各国纳米科技发展各有千秋 各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。 (一) 在纳米科技论文方面曰、德、中三国不相上下 根据中国科技信息研究所进行的纳米论文统计结果,2000~2002年,共有40 370篇纳米研究论文被《2000~2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了和。 2000~2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10 000篇,几乎占全部论文产出的30%。曰本()、德国()、中国()和法国()列在其后,它们各自的论文总数都超过了3000篇。而且以上5国2000~2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与曰本接近。 在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国三年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。 另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的。 。

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我整理的纳米材料科技论文,希望你能从中得到感悟!

纳米材料综述

【摘要】 本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。

【关键词】 纳米、纳米技术、纳米材料、纳米结构

1 引言

著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]

2 纳米技术

纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

3 纳米材料

纳米材料的概念

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

纳米材料的分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

(1)纳米粉末

纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

(2)纳米纤维

纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。

(3)纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

(4)纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

4 纳米材料的应用

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

5 纳米材料的前景

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。

6 结束语

纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。

参考文献

[1]孙红庆.科技天地―计划与市场探索[M],2001/05

[2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,43~50.

[3]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.

纳米材料与应用

摘要 :简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。

关键词 :纳米材料 性能 应用

纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。

按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。

悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约倍,这对提高冶金工业的热效率有重要意义。纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。

纳米颗粒在电学性能方面也出现了许多独特性。例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。

纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。

来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。

通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。

应用纳米TiO2泡沫镍金属滤网及甲醛、氨、TVOC吸附改性活性炭等新材料,以及采用惯流风扇取代传统的离心风扇结构,提高空气净化器的性能。光催化泡沫镍金属滤网的特性;镍金属网是用特殊的工艺方式将金属镍制作成具有三维网状结构的金属滤网。它具有:空隙加大,一般大于96%;通透性好,流体通过阻力小;其实际面积比表观面积大很多倍的特性。镍金属网是将纳米级的TiO2以特殊工艺镶嵌在泡沫状镍金属网上,从而将光催化材料的杀菌、除臭、分解有机物的功能和镍的超稳定性很好的结合在一起。它有效的解决了其他光催化材料在使用中存在的有效受光面积小、流体和光催化材料接触面积小、气阻大以及因光催化材料在光催化作用下的强氧化性致使其附着基材易老化和光催化易脱落而使其寿命短的缺陷。活性炭改性工艺及增强性能;活性炭是一种多孔性的含碳物质,它具有高度发达的空隙构造,是一种优良的空气中异味吸附剂。

纳米TiO2具有巨大的比表面积,与废水中有机物更充分地接触,可将有机物最大限度地吸附在它的表面具有更强的紫外光吸收能力,因而具有更强的光催化降解能力可快速降息夫在其表面的有机物分解。此外,在汽车尾气催化的性能方面以及在空气净化中广泛应用。

常规陶瓷由于气孔、缺陷的影响,存在着低温脆性的缺点,它的弹性模量远高于人骨,力学相容性欠佳,容易发生断裂破坏,强度和韧性都还不能满足临床上的高要求,使它的应用受到一定的限制。而纳米陶瓷由于晶粒很小,使材料中的内在气孔或缺陷尺寸大大减少,材料不易造成穿晶断裂,有利于提高材料的断裂韧性;而晶粒的细化又同时使晶界数量大大增加,有助于晶粒间的滑移,使纳米陶瓷表现出独特的超塑性。许多纳米陶瓷在室温下或较低温度下就可以发生塑性变形。纳米陶瓷的超塑性是其最引入注目的成果。传统的氧化物陶瓷是一类重要的生物医学材料,在临床上已有多方面应用,主要用于制造人工骨、人工足关节、肘关节、肩关节、骨螺钉、人工齿,以及牙种植体、耳听骨修复体等等。

由碳元素组成的碳纳米材料统称为纳米碳材料。在纳米碳材料中主要包括纳米碳纤维、碳纳米管、类金刚石碳等;纳米碳纤维除了具有微米级碳纤维的低密度、高比模量、比强度、高导电性之外,还具有缺陷数量极少、比表面积大、结构致密等特点,这些超常特性和良好的生物相容性,使它在医学领域中有广泛的应用前景,包括使人工器官、人工骨、人工齿、人工肌腱在强度、硬度、韧性等多方面的性能显著提高;此外,利用纳米碳材料的高效吸附特性,还可以将它用于血液的净化系统,清除某些特定的病毒或成份。

目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体、及介入性诊疗等许多方面。免疫分析作为一种常规的分析方法,在蛋白质、抗原、抗体乃至整个细胞的定量分析上发挥着巨大的作用。在特定的载体上,以共价结合的方式固定对应于分析对象的免疫亲和分子标识物,将含有分析对象的溶液与载体温育,通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。纳米聚合物粒子,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。

近年来,组织工程成为一个崭新的研究领域,吸引了众多学科研究者的关注。在工程化的方法培养组织、器官的过程中,用于细胞种植、生长的支架材料是一个关键的因素,能否使种植的细胞保持活性和增殖能力,是支架材料应用的重要条件。据报道,将甲壳素按一定的比例加入到胶原蛋白中可以制成一种纳米结构的复合材料,与以往的胶原蛋白支架相比,其力学强度得到增强,孔径尺寸增大,表明这种具有纳米结构的复合材料作为细胞生长的三维支架,在力学、生物学方面有很大的优越性和应用潜力。在硬组织修复与替换的研究中,纳米复合材料也开始逐步显示出其优异的性能。用肽分子和两亲化合物的自组装可以得到一种类似细胞外基质的纤维状支架,这种纳米纤维可以引导羟基磷灰石的矿化,形成纳米结构的复合材料,研究发现,这种纳米复合材料内部的微观结构与自然骨中胶原蛋白/羟基磷灰石晶粒的排列结构一致。

参考文献:

[1] 陈飞. 浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)

[2] 张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16)

纳米材料论文3000字 第4篇

1.1以单细胞生物体为模板制备纳米材料细胞是生物体结构和功能的基本单位,而细胞表面的细胞膜是由磷脂双分子层和镶嵌其中的蛋白质等构成的。不同的细胞有着独特精制的外形结构和功能化的表面,以单细胞为模板可以合成不同生物细胞形貌的纳米结构。

1.1.1以原核细胞为模板制备纳米材料细菌和放线菌被广泛应用于金属纳米颗粒的合成,其中一个原因就是它们相对易于操作。最早着手研究的Jha等[2]用乳酸杆菌引导在室温下合成了尺寸为8~35nm的TiO2纳米粒子,并提出了与反应相关的机理。随着纳米材料的生物合成的逐渐发展,现在已成功合成了以不同菌为模板的不同形貌的纳米材料。Klaus等[3]在假单胞菌(Pseudomonasstutzeri)的细胞不同结合位点处制备并发现了三角形,六边形和类球形的Ag纳米粒子,其粒径达200nm。Ahmad等[4]从一种昆虫体内提取了比基尼链霉菌(S),并以此制备出3~70nm的球形Ag纳米颗粒。Nomura等[5]以大肠杆菌为模板成功制备出平均孔径为2.5nm的杆状中空SiO2,其比表面积达68.4m2/g。

1.1.2以真核细胞为模板制备纳米材料真核细胞相比较原核细胞种类更为广泛,培养更为方便,所以以此为模板的生物合成的研究更多。最简单的单细胞真核生物小球藻可以富集各种重金属,例如铀、铜、镍等[6]。Fayaz等[7]以真菌木霉菌(Trichodermaviride)为模板在27℃下合成了粒径为5~40nm的Ag纳米粒子,并且发现青霉素,卡那霉素和红霉素等的抗菌性在加入该Ag纳米粒子后明显提高。Lin等[8]发现HAuCl4中金离子在毕赤酵母(Pichiapastoris)表面先发生了生物吸附然后进行生物还原,从而得到Au纳米粒子。研究发现金离子被酵母菌表面的氨基、羟基和其它官能团首先还原成一价金离子,并进一步被还原成Au纳米颗粒。Mishra等[9]以高里假丝酵母(C)为模板合成了面心立方结构的Au和Ag纳米粒子,两种纳米粒子对金黄色葡萄球菌有很高的抗菌性,但所做的对比试验表明化学方法合成的两种粒子对致病菌均不具有抗菌性。Zhang等[10]则以酵母菌为模板合成了形貌均一Co3O4修饰的ZnO中空结构微球。尖孢镰刀菌(Fusariu-moxysporum)[11]可以在其自身表面将米糠的无定型硅生物转化成结晶SiO2,形成2~6nm的准球形结构。

1.2以多细胞生物体为模板制备纳米材料虽然以单细胞为模板制备的纳米粒子的单分散性较好,但是要涉及到生物体复杂的培养过程及后续处理,而以多细胞生物体为模板的制备方法就显得更加方便简捷。

1.2.1以多细胞植物体为模板制备纳米材料地球上的植物种类很多,以其为模板的纳米材料的生物合成也就多种多样。多数情况下是将植物体培养在含有金属离子的溶液中,然后将植物体除去便可得到复制了植物体微结构的纳米材料。Rostami等[12]将油菜和苜蓿的种子培养在含有Au3+的溶液中,将金离子变成纳米Au粒子,其大小分别是20~128nm和8~48nm。Dwivedi等[13]以藜草(Chenopodiumalbum)为模板分别制备出平均粒径为12nm和10nm的Ag和Au纳米晶体,并认为藜草中天然的草酸对于生物还原起着重要作用。Cyganiuk等[14]以蒿柳(Salixviminalis)和金属盐为原料制备出碳基混合材料LaMnO3。将蒿柳培植在含有金属盐的溶液中,金属盐离子顺着植物组织进行传输,进而渗透其中。然后将木质素丰富的植物体部位在600~800℃范围进行煅烧碳化,得到的产物对正丁醇转化成4-庚酮有很好的催化效果。黄保军等[15]以定性滤纸通过浸渍和煅烧等一系列过程仿生合成了微纳米结构的Fe2O3,并且对其形成机理进行了初步探讨。Cai等[16]以发芽的大豆为模板,制备出室温下便有超顺磁性的Fe3O4纳米粒子,其平均粒径仅为8nm。王盟盟等[17]以山茶花花瓣为模板通过浸渍煅烧制备出CeO2分层介孔纳米片,并且在可见光波段有很好的催化活性。

1.2.2以多细胞动物体为模板制备纳米材料以多细胞动物体为模板的纳米材料的制备比较少,其中以Anshup等[18]的研究较为突出。他们分别试验了人体的癌变宫颈上皮细胞、神经细胞和未癌变正常的人类胚胎肾细胞。这些人体细胞在模拟人体环境的试管中进行培养,培养液中含有1mmol/L的HAuCl4。最终得到20~100nm的Au纳米颗粒。细胞核和细胞质中都有Au纳米粒子沉积,并且发现细胞核周围的Au粒子粒径比细胞质中的小。

2以生物体提取物或组成成分中的有效成分制备纳米材料

生物体中含有很多还原稳定性成分,如果将这些成分提取出来,就可以脱离生物体原有形貌的束缚,得到绿色无污染的生物还原剂,进而以其制备纳米材料。很多糖类,维生素,纤维素等生物组成成分也被证实有很好的生物还原稳定作用,这就使得纳米材料的绿色生物合成更加方便快捷。

2.1以微生物提取物为有效成分制备纳米材料以微生物的提取物为活性成分制备的纳米材料多数是纳米Ag和纳米Au,而且这两种粒子具有杀菌的效果。而以微生物提取物制备的纳米材料粒径更小,并且普遍也比一般化学方法合成的粒子有更好的杀菌效果[9]。Gholami-Shabani等[19]从尖孢镰刀菌(Fusariumoxysporum)中提取了硝酸盐还原酶,并用其还原得到平均粒径为50nm的球形纳米Ag颗粒,并且对人类的病原菌和细菌有很好的抗菌效果。Wei等[20]和Velmurugan等[21]分别用酵母菌和枯草杆菌提取液成功合成了不同粒径及形貌的纳米Ag颗粒。提取物中的还原性酶是促进反应进行的重要成分。Inbakandan等[22]将海洋生物海绵中提取物与HAuCl4反应制备得到粒径为7~20nm的纳米Au颗粒,主要得益于其中的水溶性有机还原性物质。Song等[23]则从嗜热古菌(hyperther-mophilicarchaeon)中提取出高耐热型腾冲硫化纺锤形病毒1(S-shapedvirus1)的病毒蛋白质外壳。并且发现实验条件下在没有遗传物质时其蛋白质外壳仍可自组装成轮状纳米结构。与TiO2纳米粒子呈现出很好的亲和能力,在纳米材料的生物合成中将有广阔的应用前景。

2.2以植物提取物为有效成分制备纳米材料生物提取物制备纳米材料的研究最多的是针对植物提取物的利用,因为地球上植物种类众多,为纳米材料的生物合成提供了众多可能性。Ahmed等[24]以海莲子植物(Salicorniabrachiata)提取液还原制得Au纳米颗粒,其粒径为22~35nm。制备出的样品对致病菌有很大的抗菌性,而且能催化硼氢化钠还原4-硝基苯酚为4-氨基苯酚,也可催化亚甲基蓝转化成无色亚甲蓝。Velmurugan等[25]和Kulkarni[26]分别用腰果果壳提取液和甘蔗汁成功制备出纳米Ag和纳米Ag/AgCl复合颗粒,其均有很好的杀菌效果。Sivaraj等[27]用一种药用植物叶子(Tabernaemontana)的提取液制备了对尿路病原体大肠杆菌有抑制作用的球形CuO纳米颗粒,其平均粒径为48nm。

2.3以生物组成成分为有效成分制备纳米材料碳水化合物是生物体中最丰富的有机化合物,分为单糖、淀粉、纤维素等。其独特的结构和成分可以用来合成各种结构的纳米材料。Panacek等[28]测试了两种单糖(葡萄糖和半乳糖)和两种二糖(麦芽糖和乳糖)对[Ag(NH3)2]+的还原效果,其中由麦芽糖还原制备的纳米Ag颗粒的平均粒径为25nm,并且对包括耐各种抗生素的金黄葡萄球菌在内的革兰氏阳性菌和革兰氏阴性菌有很好的抑制作用。Gao等[29]和Abdel-Halim等[30]分别用淀粉和纤维素还原硝酸银制得了不同粒径的Ag纳米粒子,对一些菌体同样有很好的抗菌性。维生素是人体不可缺少的成分,在人类机体的新陈代谢过程中发挥着重要作用,是很好的稳定剂和还原剂。Hui等[31]用维生素C还原制备了Ag纳米颗粒修饰的氧化石墨烯复合材料,将加有维生素C的AgNO3和氧化石墨烯溶液进行超声反应,得到的Ag纳米颗粒平均粒径为15nm,并附着在氧化石墨烯纳米片表面。Nadagouda等[32]用维生素B2为还原活性成分室温下合成了不同形貌(纳米球、纳米线、纳米棒)的纳米Pd。并且发现在不同的溶剂中制备的纳米材料的形貌和大小不同。

3以病毒为模板制备纳米材料

病毒本身没有生物活性,可以寄宿于其它宿主细胞进行自我复制,其实际上是一段有保护性外壳的DNA或RN段,大小通常处于20~450nm之间,其纳米级的大小使得以其为模板更易于制备出纳米材料。Shenton等[33]以烟草花叶病毒为模板制备了Fe3O4纳米管。因为烟草花叶病毒是由呈螺旋形排列的蛋白质单元构成,内部形成中空管。以此为模板制备出来的Fe3O4也复制了这一结构特点而呈现管状结构。由于烟草花叶病毒的尺寸小但稳定性高,使得它被频频用来作为纳米材料生物合成的骨架[34-36]。Dang等[37]则以转基因M13病毒为模板制备了单壁碳纳米管-TiO2晶体核壳复合纳米材料。实验发现以此为光阳极的染料敏化太阳能电池的能量转换效率达10.6%。

4结论

纳米材料论文3000字 第5篇

课程论文

学生姓名:

王园园

学号:20130540

学院:材料科学与工程学院

专业年级:材料化学2013级

题目:纳米陶瓷的研究现状及发展趋势

指导教师:李万千老师

评阅教师:

2015年5月

摘要 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 3 Abstract 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 错误!未定义书签。 1. 前言 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 错误!未定义书签。 2. 纳米陶瓷的概念及其发展 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 5 3. 纳米陶瓷的制备 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 7 3.1纳米陶瓷粉体的物理法制备 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 7 3.2纳米陶瓷粉体的化学法制备 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 8 4. 纳米陶瓷粉体的表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 10 4.1化学成分表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 10 4.2晶态表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 11 4.3颗粒度表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 11 4.4团聚体表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 12 5. 纳米陶瓷的性能 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 12

5.1纳米陶瓷的致密化 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 12 5.2纳米陶瓷的力学性能 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 13 6. 纳米陶瓷的应用及其展望 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 13 7. 参考文献……………………………………………………… 12 摘要

20世纪80年代中期发展起来的纳米陶瓷,对陶瓷材料的性能产生了重要的影响,为陶瓷材料的利用开拓了一个新的领域,已成为材料科学研究的热点之一。综述了纳米陶瓷材料近年来的发展与应用,重点论述了纳米陶瓷的制备、性能及应用现状,并对纳米陶瓷的未来发展进行了展望。

3 Abstract Nanometer ceramics which are developed in the mid-eighties of the twentieth century have an important affect on the properties of ceramic materials. They have formed promising fields for the utilization of materials which has been one of the most popular fields of material research. The preparation and characterization of nanometer ceramic powders and the properties and application of nanometer ceramics are summarized. The future developments of nanometer ceramics were discussed.

4 1. 前言

纳米陶瓷是一类颗粒直径界于1到100nm之间的多晶体烧结体。每个单晶颗粒的直径非常小,例如,当单晶颗粒直径为5nm时,材料中的界面的体积约为总体积的50%,特就是说,组成材料的原子有一半左右分布在界面上,这样就减少了材料内部晶体和晶界的性质差异,使得纳米陶瓷具有许多特殊的性质[1]。纳米功能陶瓷是指通过有效的分散复合而使异质相纳米颗粒均匀弥散地保留于陶瓷基质结构中而得到的复合材料,当其具有某种特殊功能时便称之为纳米功能陶瓷。纳米功能陶瓷的性能是和其特殊的微观结构相对应的,它的性能不仅取决于纳米材料本身的特性,还取决于纳米材料的物质结构和显微结构[2]。

纳米陶瓷是纳米科学技术的重要分支,是纳米材料科学的一个重要领域。纳米陶瓷的研究是当前陶瓷材料发展的重大课题之一。陶瓷是一种多晶体材料,是由晶粒和晶界所组成的烧结体,由于工艺上的原因,很难避免材料中存在气孔和微小裂纹。决定陶瓷材料性能的主要因素有:组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对陶瓷材料的力学性能产生重大影响。图1是陶瓷晶粒尺寸强度的关系图。

图1中的实线部分是现在已经达到的,而延伸的虚线部分是希望达到的。从图1中可见,晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时由于晶界数量的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减少到最低程度;其次晶粒的细化使材料不易造成穿晶断裂,有利于提高材料的断裂韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为。纳米材料的问世将使材料的强度、韧性和超塑性大大提高。纳米陶瓷由于是介于宏观和微观原子、分子的中间研究领域,它的出现开拓了人们认识物质世界的新层次,将给传统陶瓷工艺、性能及陶瓷学的研究带来更多更新的科学内涵。

2、 纳米陶瓷的概念及其发展

所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材

6 料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。陶瓷材料的脆性大、不耐热冲击、不均匀、强度差、可靠性低、加工困难等缺点大大地限制了陶瓷的应用。随着纳米技术的广泛应用,希望以纳米技术来克服陶瓷材料的这些缺点,如降低陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。因此纳米陶瓷被认为是解决陶瓷脆性的战略途径[3]。同时,纳米陶瓷也为改善陶瓷材料的烧结性和可加工性提供了一条崭新的途径。

纳米材料论文3000字 第6篇

摘 要

纳米材料由于其自身特有的物理效应和化学性质,在不同领域具有广泛的应用性,因此被誉为“21世纪最有前途的材料”。纳米材料的应用前景十分广阔,它的发展给物理、化学、材料、生物、医药等学科的研究带来了新的机遇。

通过对纳米材料及制备技术课程的学习,本文综述了对纳米材料的认识,以及其特性、分类、制备方法和其应用领域。 关键词:纳米材料;分类;特性;制备;应用 前言

纳米及纳米材料

纳米,实际上是一个长度计量单位,1 nm = 10-9 m,即一米的十亿分之一。正是这神奇的十亿分之一米,向我们开启了一个崭新的微观物质世界。当物质到纳米尺度以后,大约是在1~100nm这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是 21 世纪的三大科技之一。

纳米材料的发展简介

近年来,世界各国对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列入高科技开发项目。2005纳米科技研发预算已达到10亿美元,而且在美国该预算的优先选择领域中,纳米材料名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一。世界发达国家均对纳米产业进行战略性布局,并纷纷投入巨资。

我国的纳米材料研究起步比较晚,始于20世纪80年代末,但在“八五”期间已将纳米材料科学列入国家攀登项目。之后在基础研究和应用研究方面,我国在纳米技术研究方面也投入了大量的人力和物力。在《新材料产业“十二五”发展规划》中,纳米材料被列入6大发展重点之一的“前沿新材料”中。在国家各项科技计划的支持下,我国纳米材料及纳米科学技术也取得了比较突出的成果。 纳米材料的分类

在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数,纳米材料的基本单元可以分为3类:① 0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝,纳米棒,纳米管等;③ 2维,指在3维空间中有1维在纳米尺寸,如超薄膜,多层膜,超晶格等。按化学组成可分为:纳米金属,纳米晶体,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料。按材料物性可分为:纳米半导体,纳米磁性材料,纳米非线性光学材料,纳米铁电体,纳米超导材料,纳米热电材料等。按应用可分为:纳米电子材料,纳米光电子材料,纳米生物医用材料,纳米敏感材料,纳米储能材料等。 纳米材料的特性

纳米材料具有尺寸小,表面积大,表面能高,表面原子比例大的四大特点,并且具有小尺寸效应,量子尺寸效应,宏观量子隧道效应,表面效应四大效应。纳米材料的特性主要取决于制备方法。

表面效应

球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积与直径成反比,随着颗粒直径的变小比表面积将会显著地增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很高的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。这种表面原子的活性不但引起纳米粒子表面原子输运和构型变化,同时也引起表面电子自旋构像和电子能谱的变化。

小尺寸效应

随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质:① 特殊的光学性质;② 特殊的热血性质;③ 特殊的磁学性质;④ 特殊的力学性质。超微颗粒的小尺寸效应还表现在超导电性,介电性,能声学特性以及化学性能等方面。

量子尺寸效应

微粒尺寸下降到一定值时,费米能级附近的电子能级由准连续能级变为分立能级,吸收光谱阙值向短波方向移动,这种现象称为量子尺寸效应。量子尺寸效应产生最直接的影响就是纳米晶体吸收光谱的边界蓝移。这是由于在纳米尺度半导体微晶中,光照产生的电子和空穴不再是自由的。存在库仑作用,此电子空穴对类似于大晶体中的激子。由于空间的强烈束缚导致激子吸收峰蓝移,带边以及导带中更高激发态均相应蓝移。

宏观量子隧道效应

隧道效应是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量如微颗粒的磁化强度,量子相干器件中的磁通量及电荷也具有隧道效应,它们可以穿越宏观系统的势阱而产生变化,故称之为宏观量子隧道效应。

纳米材料的物理性质和化学性质既不同于宏观物体,也不同于微观的原子和分子。当组成材料的尺寸达到纳米量级时,纳米材料表现出的性质与体材料有很大的不同。在纳米尺度范围内原子及分子的相互作用,强烈地影响物质的宏观性

质。物质的机械、电学、光学等性质的改变,出现了构筑它们的基石达到纳米尺度。纳米材料之所以能具备独到的特性,是因为组成物质中的某一相的某一维的尺度缩小至纳米级,物质的物理性能将出现根本不是它的组分所能比拟的改变。 纳米材料的制备

纳米材料的制备主要有物理合成法和化学合成法,合成过程中将材料进行纳米结构化,主要包括以下几个方面。

常见的物理合成方法有喷雾法、喷雾干燥法、喷雾热解法、冷冻—干燥法、 反应性球磨法、气流粉碎技术等。其中气流粉碎技术具有比较多的优点,它是采用高速的超音速气流来加速固体物料,使物料互相撞击或与靶撞击使物料粉碎,气流粉碎技术加工效率较高,尤其是对超硬的材料更能体现出该方法的优点,比较先进的气流粉碎设备,可以使物料在粉碎时不接触其它物质,因而可以减小对粉料的污染。

化学合成法主要有等离子体制备纳米粉末技术化学气相沉淀法、共沉淀法、均匀沉淀法、溶剂热合成法、溶胶—凝胶法、水热法制备纳米粉末技术、微乳化技术等合成方法。其中化学气相沉淀法形成的纳米材料较细,较均一,化学气相沉淀法的原理是将一种或数种反应气体通过热、激光等离子体等而发生化学反 应,析出超微粉的纳米材料制备方法。由于存在于气相中的粒子成核及生长的空间比较大,因此,该方法制得的粒子分散度较好,同时,又因为反应是在封闭容器中进行,使得化学气相沉淀法形成的纳米粒子具有比较高的纯度。 纳米材料的应用

纳米材料具有常规材料所不具备的物理特性,即具有高度的弥散性和大界面,使纳米材料具有高扩散率,蠕变和超塑性。为原子提供了短程扩散途径,使有限固溶体的固溶性增强,烧结温度降低,从而其化学活性增大。因此纳米材料的力、 热、声、光、电磁等性质不同于该物质在粗晶状态时所表现出的性质。纳米材料的高强度、高扩散性、高塑性、低密度、高电阻、高比热、强软磁性等特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特 殊导体、热交换材料、敏感元件、润滑剂等领域。以下综述了纳米材料在几个领域的应用。

碳纳米管的应用

纳米碳管在电学、力学、热学等方面具有特殊的性质,因此具有很好的应用前景。

纳米碳管的电学性质及应用,碳纳米管电极具有较大的电极表面积和较高的电子传递速率,因此可增大电流响应,使得碳纳米管电化学分析性能更为优异。另外在碳纳米管内,电子的量子限域所致电子只能在石墨片中沿着碳纳米管的轴向运动,电子是沿着石墨片层的单个平面进行传导的,其电子传输通道随碳管直径的增加而增加,因此,纳米碳管具有独特的发射传导性质。改变纳米碳管格子的母体结构也可引起纳米碳管导电性的变化,因此碳纳米管的电学性能很独特,它同时具有金属性和半导体性,所以纳米碳管适宜于制备纳米电子原件。

力学性质及应用,C—C共价键使纳米碳管具有很高的强度和刚度。纳米碳管的弹性模量和相应的刚度值近似于或大于石墨的内平面值,同时纳米碳管还具备与其它碳物质不同的力学性质,比如轴向上的高弹性和径向上高塑性,这些特 性可使纳米碳管承受40%的拉伸变形而不会断裂。纳米碳管在受到压力影响时能产生流动性导致直径发生变化,其螺旋度也会随之改变,从而影响其电子特征。 利用纳米碳管的这种特性可用来制造探测机械压力的纳米传感器。

热学性质及应用,纳米碳管的热传导率体现的是石墨的内平面特性,故而它的热传导率非常高仅次于一定形式的掺杂金刚石。纳米碳管同时具有很高的长径比,此特点可以用来改善分散不连续的纤维复合物的热传导率。纳米碳管优异的 导热性能可使其发展为今后计算机芯片的导热板,也可用作发动机、火箭等各种高温部件的防护材料。纳米碳管具有高热稳定性,同时兼具高耐磨性和耐腐蚀性,可以用其制造刀具和磨具。

另外,纳米碳管还具很多其它性能,例如它的储氢特性,纳米碳管表面存在的羟基能够和某些阳离子键合,从而达到表观上对金属离子或有机物产生吸附 作用。纳米碳管粒子具有大的比表面积,也是纳米碳管具备吸附作用的重要原因。 纳米碳管还具有吸波特性,用纳米碳管做成的物体对微波雷达有好的隐身性能。

在催化方面的应用

用作高效催化剂是纳米颗粒材料的重要应用领域之一,纳米颗粒具有很高的比表面积,表面的键态和电子态与颗粒内部不同,表面原子配位不全等特点,导致表面的活性位置增加,使得纳米颗粒具备了作为催化剂的先决条件。有人预计纳米颗粒催化剂将成为本世纪催化剂的主角。光催化剂是一种具有应用潜力的特殊催化剂,纳米TiO2所具有的量子尺寸效应使其导电和介电能级变成分立的能级,能隙变宽,导电电位变得负移,而介电电位变得正移,这使其获得了更强的氧化还原能力。

在电池中的应用

纳米材料已广泛应用到化学电源中的活性材料中,并推动着电池科技发展,纳米活性材料所具有的比表面大,锂离子嵌入脱出深度小,行程短的特性,使电

极在大电流下充放电极化程度小,可逆容量高,循环寿命长;纳米材料的高空隙率为有机溶剂分子的迁移提供了自由空间,使有机溶剂具有良好的相容性,同时,也给锂离子的嵌入脱出提供了大量的空间。作为电极的活性材料纳米化后,它表面增大,致使它极化减小,而电容量增大。由此产生较强大的电化学活性特别是纳米碳管在作为新型贮锂材料、电化学贮能材料和高性能复合材料等方面的研究已取得了重大突破另外,由于纳米材料的研究目前大多处于实验室阶段,因此如何制得粒径可控的纳米颗粒,解决这些颗粒在贮存和运输过程中的团聚问题,简化合成方法,降低成本等,依然是以后还需要研究的重要问题。 总结

材料的结构决定材料的性质。纳米材料的特殊结构决定了纳米材料具有一系列的特性(如小尺寸效应、量子尺寸效应和宏观量子隧道效应等),因而出现常规材料所没有的一些特别性能, 从而使纳米材料获得和正在获得广泛的应用。通过纳米技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,已成为经济新增长点的发展基础。随着其制备和改性技术不断发展,纳米材料将在诸多领域得到日益广泛的应用。 5

参考文献

[1] 朱世东, 周根树。 纳米材料国内外研究进展。 热处理技术与装备,2010,31(3): 1~5 [2] 林晨。 纳米材料在化工行业中的应用。 化学工程与装备,2010, 17 : 120~121. [3] 周裁民, 杨雄波, 许瑞珍。 纳米材料的研究现状及发展趋势。 科技信息,2008, (17): 17~18 [4] 袁哲俊。 纳米科学与技术。 哈尔滨工业大学出版社, 2005. [5] 张莉莉, 蒋惠亮, 陈明清。 纳米技术与纳米材料。 日用化学工业, 2004,34(2): 123~126. [6] 李凤生。 超细粉体技术。国防工业出版社, 2000. [7] 李淑娥, 唐润清, 李汉忠。 纳米材料的分类及其物理性能。 济宁师范专科学校

学报,2007,28(3) 10~11. [8] 李嘉, 尹衍升。 纳米材料的分类及基本结构效应。 现代技术陶瓷,2003,96(2) 26~30.

[9] 卫英慧, 胡兰青, 许并社。 纳米材料和技术应用进展。 机械管理开发,2002,66(2): 26~27. [10] 杨剑, 滕凤思。 纳米材料综述。 材料导报,1997,11(2): 6~10. [11] 杜仕国, 施冬梅, 邓辉。 纳米材料的特异效应及其应用。 自然杂志,1999,22(2): 102~105. [12] 原继红, 韩晓云。 纳米材料的应用。 绥化学院学报,2012,32(1): 184~186. [13] 李彦菊, 高飞。 纳米材料研究进展。 甘肃石油和化工,2011,4: 7~10. [14] 孙成林。 对纳米技术和材料的认识。 硫磷设计与粉体工程,2005,1: 8~11.

抱歉,评论功能暂时关闭!