毕业论文的数据 第1篇
除原始数据格式外,还有一些分析方法还会使用到加权数据格式,在医学/实验研究中,很多时候只有汇总数据,即带加权项的数据,如卡方检验等。下图为卡方检验的加权数据,加权数据格式的特点是:基本只针对全部为定类数据的研究时使用,且只提供汇总数据,不提供原始数据。
在进行数据分析时,单单掌握原始数据格式和加权数据格式还是不够的,因为每一种分析方法对应的数据类型与数据格式都不尽相同,只有将数据整理成分析方法要求的格式才能正常使用软件进行对应的分析,从而得到正确的分析结果。
接下来从几个方面介绍一些典型的分析方法的数据格式。
毕业论文常用的差异性分析方法有方差分析、t检验、卡方检验,一些代表性分析方法数据格式如下说明。
毕业论文的数据 第2篇
1、频数分析
对一组数据的不同数值的频数,或者数据落入指定区域内的频数进行统计,了解其数据分布状况的方式。通过频数分析,能在一定程度上反映出样本是否具有总体代表性,抽样是否存在系统偏差,并以此证明以后相关问题分析的代表性和可信性
2、描述性统计
对调查总体所有变量的有关数据进行统计性描述,包括数据的集中趋势与离散趋势
3、探索性分析
正态性检验用于检验数据是否满足正态分布,一些算法需要数据满足正态分布(如单样本T检验,独立样本T检验等)
毕业论文的数据 第3篇
熵值法用于指标的权重情况。1个指标占用1列数据。下图中样本编号只是个编号无实际意义,用于标识下样本的ID号,一般是比如年份一类的数据信息,分析时并不需要使用。
如果是面板数据希望进行熵值法,其数据格式如下图所示,比如有100家公司分别5年的指标数据,那么一共就有100*5=500行数据。数据格式上需要如此,但在分析时只需要放入‘指标列’数据即可。
毕业论文的数据 第4篇
耦合协调度研究不同系统之间的耦合协调情况,因此1列表示1个系统的数据,1行表示1个研究对象,其数据格式如下图所示:
毕业论文的数据 第5篇
灰色关联法研究数据之间的关联程度,即特征序列与母序列的关联性情况。母序列单独使用一列标识,每个特征序列都使用1列标识。下图中样本编号只是个编号无实际意义,用于标识下样本的ID号,一般是比如年份一类的数据信息,分析时并不需要使用。
毕业论文的数据 第6篇
可以分为
1、一元线性回归分析:只有一个自变量x与因变量v有关,x与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。
2、多元线性回归分析:使用条件:分析多个自变量与因变量Y的关系,x与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。
1) 变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法
2)横型诊断方法:
A残差检验:观测值与估计值的差值要艰从正态分布
B强影响点判断:寻找方式一般分为标准误差法、Mahalanobis 距离法
C共线性诊断:
诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针cl、方差比例
处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等
3、Logistic 回归分析
线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况。
4、其他回归方法非线性回归、有序回归、Probit 回归、加权回归等。