数学建模结课论文2000字 第1篇
大学生数学建模的论文
1.数学建模对学生创新思维和创新精神的培养
数学建模解决的都是与我们生活息息相关的实际问题,很多都是当前社会比较关注的热点问题,比如开放性小区的建立,人工智能机器人在工作中的应用,这些问题开放性比较强,有明确的目的和要求,但它没有唯一的结果和方法。因此留给学生很大的创新空间,使学生对数学产生了极大的兴趣,他们发现这几年学习的高数、线性代数、概率论与数理统计终于派上了用场。数学建模课程会结合《高等数学》,《线性代数》,《概率论与数理统计》等数学基础学科,还会经常涉及到物理,工程,经济,金融,农林等各个领域各个学科,从不同的学科中找最热门最真实的案例进行教学,这要求学生有很强的自学能力,要不得学习新知识,新思路和新方法,让学生结合所学的数学知识把自己学科的专业知识转化成数学模型,让数学充分发挥它的优势,以达到培养学生的创新能力,更重要的是对学生的知识体系起到了完善的作用。在整个竞赛中从模型建立与求解到写作,都是由学生独立完成,充分发挥了他们的自主性和创造性。
2.数学建模能培养学生团队合作精神和创新创业能力
数学建模竞赛是由三个人组成一个小团队共同处理一个问题,在这个团队中每个人都各有分工,有的人擅长建立模型,有的人擅长计算机编程求解模型,有的人擅长写作,这三个人缺一不可,任何一个人都发挥着举足轻重的作用。通常我们还会设一个队长能协调队员之间的关系和对题目的把控。每个人都有不同的性格,能力,学识,知识结构,在做题的过程中会产生不同的想法,比如在模型的建立中,数据的处理过程中,算法的选取,编程语言的选取,写作的过程中都会有很多的不同,所以每个成员都要有团队精神、相互信任、相互沟通、相互尊重、取长补短、充分发挥集体的力量共同完成一个项目。同时每年无论在培训还是正式比赛过程中由于高强度的脑力活动,强大的心理压力以及队员之间的不和睦都会造成中途退赛,这样无疑是最可惜的。所以,在竞赛中除了培养学生的创新意识和团队合作精神,还培养了大家的心理承受能力,强大的意志力以及与他人沟通交往的能力,是对自己综合素质的一个提高,对未来考研、出国、就业都有很大的帮助。
3.数学建模培养学生的创新创业的.综合能力
通过在大二一年的数学建模选修课,以及假期的集中培训培养了学生的创新创业能力,很大程度上提高了他们思考问题解决问题的能力等综合素质,同时还培养了他们应用计算机去处理各种问题的科技能力。他们学会了各种软件、语言,很多同学会数据挖掘、机器学习以及人工智能,这些都是未来科技的前沿,科技创新是企业发展的动力,现代教育不能只停留在教授学生理论知识的学习,更重要的是理论与实践的结合,走产学研相结合的道路,数学建模很好的把理论与实践相结合,激发学生科研热情,提高学生科研积极性,激发了学生的创新创业能力,为以后工作生活奠定了扎实的基础。为了让建模更好的服务学生,我们将不断的努力,探索和改进培养模式和方法,争取通过数学建模平台使更多的同学受益,培养出更多的具有创新创业能力的大学生。
参考文献:
[1]周玮.融数学实验于高职数学教学的实践与研究[J].数学教育学报,,19(6):80-81.
[2]韦程东.数学建模能力培养方法研究[M].北京:科学出版社,.
数学建模结课论文2000字 第2篇
关键词:数学建模 课程改革 实践教学
数学建模是把数学与客观实际问题联系起来的纽带,通过数学语言来描述和仿真实际问题中的变量关系、空间形式。数学建模在现代科学技术以及社会生活和经济活动中的重要作用日益受到数学界与社会各界的普遍重视。近年来,一些发达国家普遍在大学中开设数学模型课,开展大学生数学建模竞赛。
数学建模课的主要作用不仅是为学生学会应用所学知识解决各专业问题及各种实际问题提供方法,更主要的是让学生学会用数学的思维、数学的观点、数学的语言描述并解决实际问题,该课是联系数学与其他各学科的纽带,是数学知识应用于实际问题的桥梁。通过该课程的学习可以提高学生分析问题解决问题的能力,提高学生应用计算机及相关软件的能力,提高学生科技论文的撰写能力,提高学生的创新能力和团结协作能力。
1 数学建模课程的改革
改革理念
以“应用型”培养目标作为改革的总体理念
按照我校应用型本科院校的定位,根据学院人才培养目标的定位,有针对的选择数学建模课程教学内容、合理设计教学方法,着重培养学生的实际应用能力。
注重与专业教学相结合的改革理念
在教学过程中,注重数学建模课程内容选择与专业教学相结合,以适应专业的需求和学生今后发展的需要。根据专业特点,选择经典案例。如适合土建类专业的拱形桥梁模型、放射性废物处理模型;适合交通汽车等专业的交通事故勘察模型;适合管理类等专业的人口控制统计模型、广告促销模型、股票收益与风险模型、物流分配等。
坚持“宽口径”的改革理念
“宽口径”指拓宽知识面。数学建模课程面向全校学生,除了结合专业背景,还需注重拓宽知识面,增加覆盖面,扩大学生视野,让学生学会用数学方法、数学思维去解决实际中各种各样的问题,培养适应性强的应用型人才。
坚持理论教学与实践教学相结合的改革理念
数学建模课程不仅强调理论知识,还注重各种数学软件的应用。在教学过程中加强实验教学,让学生能熟练使用各种计算机软件方便解决实际问题,组织学生参加建模竞赛,通过实践训练为学生打通理论与实际联系的桥梁。
革的几点做法
结合模块化数学教学体系,优化数学建模课程体系
数学建模课成建立在大学数学,包括高等数学、线性代数、概率论与数理统计等的教学基础之上,根据我校应用型本科院校培养目标及数学教学体系的四个模块:土建类、机电类、经管类和文科类,有针对性的选择教学内容,结合工程应用背景,强调理论教学与实践教学相结合,拓宽知识面,构建适合我校学生的数学建模课程。
更新教学内容,建设现代化教学模式
数学建模教学内容是集经典数学理论、现代数学方法、工程实际问题于一体的新型课程。我们在教学过程中将经典内容与现代内容进行结合,用生活中的案例来提高学生对实际问题的感性认识,增进学生对用数学方法、数学思维来解决实际问题的理解。比如在讲微分方程时,我们引入现代非典传染病模型;在讲积分理论时,引入加油站的油罐偏置模型;在讲图论时,引入北京奥运公交路线模型;在讲线性回归、多元回归、人工神经元网络预测时,引入上海世博会影响力评估模型等。跟踪国内国际应用领域的新发展,将经典数学理论与现实社会中的具体实例相结合,促进学生对知识的理解,提高学生实际应用能力。
(1)采用导学式教学力。在教学过程中,鼓励学生自主提出问题,引导学生进行归纳、总结分析,培养学生分析解决问题的能力。
(2)引入了案例教学方式,通过对具体建模案例的分析,丰富教学内容,激发学生学习数学建模的兴趣。
(3)在讲解数学建模的基础知识外,根据近几年建模竞赛赛题的特点,通过专题讲座的形式补充部分内容,如:图论知识、微分方程、多元统计分析等内容,开阔学生视野。
加强实验教学和实践教学
数学建模课程不同于传统的数学课,实验和实践教学是其必不可少的环节。每年给学生培训MATLAB、Mathematic、Lindo/Lingo、SPSS、WINQSB等计算机软件工具。坚持“拓宽知识面,增强适应性”原则,本着专业面宽,适应性强,加大知识覆盖面,加强实验教学和实践教学。
采用多媒体教学与传统教学相结合
在教学方法和手段的改革上,采用了多媒体教学与传统教学相结合的并行模式。许多用传统方法讲授起来枯燥无味、难以理解的东西,可以通过多媒体技术直观易懂地表现出来,使学生在充满趣味性和应用性环境中学习和掌握知识。多媒体教学手段激发了广大学生学习积极性,学习质量有了明显提高。
构建网络教学环境
建立交互性强的数学建模网站,在网站发表建模问题、回答学生提出的问题、接受学生对建模问题的答案,可以进行在线答疑、在线交流、在线自学,具有较强的可操作性。
我校数学建模网站已投入使用。各年的大学生数学建模竞赛试题、院数学建模竞赛试题、各年获奖名单等均已上网,学生可在网上方便查到数学建模的各种资料,为学习自学提供了充分的条件和有利的保证。
组织数学建模竞赛
每年举办校内数学建模竞赛,以竞赛促进学习、开阔学生视野、活跃学习气氛。并逐层选拔学生参加东三省大学生数学建模竞赛、全国大学生数学建模竞赛和全美大学生数学建模竞赛。
2 结论
我院数学建模课程以培养应用型人才为总体目标,结合我校四个模块的数学教学体系和专业培养目标,更新改革教学内容,通过启发式、自学式、学生讲课讨论等教学方法,引入数学软件培训,组织学生参加数学建模竞赛等改革和探索,我们构建了一个比较规范的数学建模课程教学体系,有利于全面提高学生的数学素质,培养学生数学思维,加强学生实践应用能力,使得数学建模课程成为培养工程应用型人才的有力手段。
参考文献
[1] 李大潜.将数学建模思想融入数学类主干课程[J].中国大学教学,2006,1(1):9.
数学建模结课论文2000字 第3篇
关键词:数学建模;图论;实践
一、引言
图论是组合数学的一个重要分支。它以图为研究对象,这种图由若干给定的点及连接两点的边所构成,通常用来描述某些事物之间的某种特定关系,以点代表事物,以连接两点的边表示两个事物间具有这种关系。图论的应用非常广泛,在实际的生活生产中,有很多问题可以用图论的知识和方法来解决,其应用性已涉及物理学、化学、信息论、控制论、网络理论、博弈、运输网络、社会科学以及管理科学等诸多领域。目前高校很多课程都涉及到图论知识,例如离散数学、数据结构、算法分析与设计、运筹学、组合数学、拓扑学、网络优化等。甚至有些专业将图论作为一门必修或选修课程来开设。
由于图论课程具有概念多、公式复杂和定理难证明、难理解等特点,在一定程度上造成教学难,证明抽象度高,学生难以理解,学生不能真正理解图论思想,更谈不上灵活运用图论知识来解决各种实际问题。从而会使学生感到图论的学习非常枯燥。大学数学课程教学改革的趋势,越来越注重数学的应用性,而数学建模过程就是利用已经掌握的数学知识来解决实际问题的过程。在当前实现数学作为一种应用能力的过程中,使用数学解决实际问题的能力培养是非常重要和必需的。因此,在大学数学类课程的教学中融入数学建模思想是目前数学课程教学改革的一个大的趋势。由于图论的概念和定理大多是从实际问题中抽象出来的,因此图论中的诸多模型和算法是数学建模强有力的理论依据。所以在图论课程教学中注重介绍这些概念和理论的实际背景,引导学生利用数学建模思想方法学习图论的相关概念和定理,探究图论的发展规律,从而将更好地帮助学生理解和掌握这些概念和理论。
二、数学建模思想方法
数学模型就是用数学语言,通过抽象、简化,建立起来的描述客观事物的特征及其内在联系的数学结构。这个结构可以是公式、方程、表格、图形等。把现实模型抽象、简化为某种数学结构(即数学模型)之后,我们就可以用相关的数学知识来求出这个模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,这个过程便称为数学建模。其目的是将复杂的客观事物或联系简单化并用数学手段对其进行分析和处理。建立数学模型解决现实问题要经过模型准备、模型假设、模型构成、模型求解和模型分析这五个步骤。模型准备就是了解问题的实际背景,明确建模目的,搜集必要的各种信息,尽量弄清对象的特征,形成一个比较明晰的“问题”。模型假设是根据对象的特征和建模目的,抓住问题的本质,做出必要的、合理的简化假设。模型构成是根据所作的假设,用数学的语言、符号描述对象的内在规律,建立包含常量、变量等的数学模型。模型求解是采用解方程、画图形、优化方法、数值计算、统计分析等各种数学方法,特别是数学软件和计算机技术求解。模型分析就是对求解结果进行数学上的分析,并解释为对现实问题的解答。由此可见,思想数学建模就是将数学的理论知识应用于解决实际问题,培养数学建模思想就是锻炼应用数学的能力。
在图论的教学中引入数学建模思想,将生活中的实际问题引入课堂,利用图论知识分析实际问题,让学生感受到图论贴近生活。教学中可以引导学生自己寻找与图论相关的实际问题,利用图论知识建立实际问题的数学模型,并进行报告和讨论,让学生发表自己的见解和看法,在此过程中有助于学生对所学知识的融会贯通和掌握,大大提高学生学习图论的兴趣。
三、数学建模思想方法融入图论教学的实践
目前,各门数学课程教学改革所面临的一个课题是如何增强应用数学知识解决实际问题的意识。在这样的背景下,加之图论知识的应用广泛性,从而,将数学建模的思想方法融入到图论课程教学中的研究和实践已显得刻不容缓。因此,结合图论教学内容有机地增加数学建模教学内容,使广大的学生能学习和体会到数学建模的基本思想方法,在日常的学习中培养学生应用图论知识的意识,激发了学生学习图论的积极性。
(一)在图论定理公式中渗入建模的案例
在图论某些定理证明的教学过程中可以适当地融入数学建模的思想与方法,把定理的结论看作一个特定的模型,需要去建立它。于是,当把定理的条件看作是模型的假设时,可根据预先设置的问题,情景引导学生发现定理的结论,从而定理证明的方法也随之显现。
案例1:设为任意无向图,V={v1,v2,…,vn},|E|=m,证明所有顶点的度数和=2m,并且奇点个数为偶数。
解析:证明该结论之前,首先任意选取若干个学生让其随机互相握手,并记下每个人的握手次数和每两人之间握手的次数,由此可得每个人握手次数总和是每两人之间握手次数的2倍以及握过奇数次手的人数一定是偶数。互动之后介绍该定理称之为握手定理,从互动过程中可以建立定理结论的模型,并且证明的思路也是显而易见的。
(二)在应用性例题中渗入数学建模的方法
案例2:一家公司生产有c1,c2,c3,c4,c5,c6,c7七种化学制剂,其中制剂(c1,c2),(c1,c4),(c2,c3),(c2,c5),(c2,c7),(c3,c4),(c3,c5),(c3,c6),(c4,c5),(c4,c7),(c5,c6),(c6,c7)之间是互不相容的,如果放在一起能发生化学反应,引起危险。因此,作为一种预防措施,该公司必须把仓库分成互相隔离的若干区,以便把不相容的制品储藏在不同的区,问至少要划分多少小区,怎样存放才能保证安全。
解析:首先建立模型,用图来表示实例中这些制剂和他们之间关系,用顶点v1,v2,v3,v4,v5,v6,v7,表示c1,c2,c3,c4,c5,c6,c7表示七种化学制品,把不能放在一起的两种制品对应的顶点用一条边连接起来,如图1。
模型求解:由图可得极小覆盖的逻辑表达式为:
(v1+v2v4)(v2+v1v3v5v7)(v3+v2v4v5v6)(v4+v1v3v5v7)(v5+v23v4v6)(v6+v3v5v7)(v7+v2v4v6)
利用逻辑代数法则简化上述逻辑表达式为:
v1v3v5v7+v2v3v4v5v6+v2v4v5v6+v2v3v4v6
从而可得全部极小覆盖为:
(v1,v3,v5,v7),(v2,v3,v4,v5,v7),(v2,v4,v5,v6),(v2,v3,v4,v6)
由于极大独立集与极小覆盖集之间互补的关系,所以上图的所有极大独立集为(v2,v4,v6),(v1,v6),(v1,v3,v7),(v1,v5,v7).取图G的一个极大独立集V1=(v2,v4,v6),将其着第一种颜色。在VG-V1中,所有极大独立集为,(v1,v3,v7),(v1,v5,v7),取V2=(v1,v3,v7)将其着第二种颜色。在VG-V1-V2中仅有点v5,将其着第三种颜色,故χ(G)=3.
于是得到该化学制品的存放方案:至少需要把仓库划分为3个区,可以将c2,c4,c6三种制品,c1,c3,c7三种制品和制品c5分别存放在一个区。
(三)设计相关数学建模问题,提高学生应用图论知识解决实际问题的能力
由于教学课时的限制,将数学建模的思想方法融入图论课程教学时,不能专门地让学生学习建模,只能通过一些简单的模型给学生介绍数学建模的思想及方法。图论是现代数学的一个重要分支,在自然科学、社会科学、机械工程中有重要的意义,其求解思想渗透到自然学科的各个领域。因此,可以通过设计一些与图论课程相关的课外建模活动,选择符合学生实际并贴近生活的一些图论问题,启迪学生的论文查阅意识和能力,指导学生阅读相关论文,最后以解题报告或小论文的形式提交他们的结果。促进学生应用图论知识解决实际问题的能力。
四、结语
将数学建模思想方法融入图论课程的教学中,使图论课程教学与数学建模有机结合起来,激发学生学习图论的兴趣,培养学生勇于探索的精神,提高学生的动手能力,实践表明这些方法能较好地提高图论课程的教学效果。
参考文献:
[1]Bondy J A,Murty U S theory with applications[M].North-Holland:Elsevier,1976.
[2]翟明清.浅析图论教学[J].大学数学,2011,27(5):23-26.
[3]定向峰.将数学建模的思想和方法融入图论课程教学中的一点尝试[J].重庆教育学院学报,2006,19(6):28-31.
[4]张清华,陈六新,李永红.图论教育教学改革与实践[J].电脑知识与技术,2012,8(34):8235-8237.
[5]姜启源,谢金星,叶俊.数学模型[M].第4版.北京:高等教育出版社,2011.
数学建模结课论文2000字 第4篇
摘要:
层次分析法是美国学者于20世纪70年代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,简称AHP。传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。本文利用微软的Excel电子表格的强大的函数运算功能,设置了简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。
关键词:
Excel 模型 层次分析法
一、层次分析法的基本原理
层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。
用AHP分析问题大体要经过以下七个步骤:
(1)建立层次结构模型;
首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的.中间层和最低层的形式排列起来。对于决策问题,通常可以将其划分成层次结构模型,如图1所示。
其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。
中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。
最低层:表示解决问题的措施或政策(即方案)。
(2)构造判断矩阵;
设有某层有n个元素,X={Xx1,x2,x3……xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把n个因素对上层某一目标的影响程度排序。上述比较是两两因素之间进行的比较,比较时取1~9尺度。
用 表示第i个因素相对于第j个因素的比较结果,则
A则称为成对比较矩阵
比较尺度:(1~9尺度的含义)
如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。
倒数:若j因素和i因素比较,得到的判断值为
(3)用和积法或方根法等求得特征向量 W(向量 W 的分量 Wi 即为层次单排序)并计算最大特征根λmax;
(4)计算一致性指标 CI、RI、CR 并判断是否具有满意的一致性。其中RI是
平均随机一致性指标 RI 的数值:
矩阵阶数34567891011
CR=CI/RI,一般地当一致性比率CR<时,认为A的不一致程度在容许范围之内,可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵,对A加以调整。
(5)层次总排序,如表1所示。
(6)层次总排序一致性检验,如前所述。
(7)根据需要进行调整 对于层次单排序结果和层次总排序结果,只要符合满意一致性即随机一致性比例 CR≤ 就可以结束计算并认同排序结果,否则就要返回调整不符合一致性的判断矩阵。
二、层次分析法 Excel 模型设计过程
案例:某人欲到苏州、杭州、桂林三地旅游,选择要考虑的因素包括四个方面:景色、费用、居住和饮食,用层次分析法选一个适合自己情况的旅游点。
⒈根据题意可以建立层次结构模型如图1所示。
⒉Excel实现过程
⑴将准则层的各因素对目标层的影响两两比较结果输入Excel表格中,进行单排序及一致性检验如图2所示。 其中:F4=PRODUCT(B4:E4),表示B4、C4、D4、E4各单元格连乘,复制公式至F7单元格。 G4=POWER(F4,1/4),表示将F4单元格的值开4次方,复制公式至G7单元格 G8=SUM(G4:G7),表示求和 H4=G4/$G$8,复制公式至H7单元格 I4= B4*H$4+C4*H$5+D4*H$6+E4*H$7,复制公式至I7单元格 J4= I4/H4 λmax= AVERAGE(J4:J7)。 CI=(J8-4)/(4-1),CR=CI/;,即通过一致性检验。
⑵按同样的方法分别计算出方案层对景色、费用、居住、饮食的判断矩阵及一致性检验,如图3所示。
⑶层次总排序,由于苏州数值最高,故选择的旅游地为苏州,如图4所示。 其中:C44=K14,G44=$C$43*C44,H48={SUM($C$43:$F$43*C48:F48)},注意:这是一个数组函数需按ctrl+shift+enter三键确定。
三、基于Excel的层次分析法模型设计的优势
(1)层次分析法 Excel 算法以广泛使用的办公软件 Excel 作为运算平台,无需掌握深奥的计算机专业知识和术语,有很好的推广应用基础。
(2)层次分析法 Excel算法的所有计算结果和数据均保留最高位数的精确度,可以不在任何环节进行四舍五入,当然也可以根据需要设置小数位,从而最大限度地减少了误差。
(3)层次分析法 Excel 算法的计算步骤设计成环环相扣、步步跟踪,步骤设计完毕后,可以按需要填充或变更,其余数据和结果均可以在填充或变更判断矩阵之后立即得出,使得整个运算过程简捷、轻松。另外,相似的矩阵区和计算区可以通过复制完成,只需改动少量单元格。
(4)层次分析法 Excel 算法将一致性检验也同时计算出来,决策者和判断者可以即时知道自己的判断是否具有满意的一致性并可以随时和简单地进行调整直到符合满意一致性。
(5)如果一致性指标不能令人满意,用本方法可以比较容易地实现对判断矩阵的调整,可以实现对判断的“微调” ,使得逼近最大程度的“满意一致性”甚至“完全一致性”而又不必进行繁重运算成为可能。
数学建模结课论文2000字 第5篇
关键词:数学建模,论文写作,团队合作
一、概述
数学建模(Mathematical Modeling):数学建模就是应用数学工具,建立模型来解决各种实际问题的方法,它通过把实际问题进行简化、抽象,应用适定的数学工具得到的一个数学结构,寻找系统内部的规律,或者对模型进行求解、解释,并验证所得到的结论。俗地说:数学建模就是用数学知识和方法建立数学模型解决实际问题的过程。数学模型作为数学与实际问题的桥梁,在数学的各个领域成为了广泛应用的媒介,是数学理论知识和应用能力共同提高的最佳结合点。在学生培养和参加竞赛的过程中,数学建模的教学起到了启迪学生的创新意识和创新思维、培养文献查询与阅读、信息收集与分析、数据分析与综合、论文撰写与修改等综合能力,是培养创新型人才的一条重要途径。
数学建模训练的目的是培养学生综合运用数学、计算机、统计学、物理学、经济学、管理学知识,运用所学知识解决实际问题的能力,并能将所学的的知识运用到今后的日常生活和工作中。建立相应的课程在对学生的综合能力进行培养的时候,不能局限于数学知识的理解和运用,而是要注重从信息分析与综合、数据收集与统计、问题抽象与概括、论文写作与表达等不同方面进行培养。具体包括:
(1)抽象和概括实际问题的能力,必须学会抓住实际系统的核心问题;(2)不同学科知识的综合集成。数学建模不仅仅需要扎实的数学基础,敏锐的洞察力和想象力,更重要的是对实际问题的浓厚兴趣和广博的知识面,因此必须具备问题相关的各个领域的知识背景。因此,学生应着重培养以下能力:(1)发现、综合问题的能力,并对问题做积极的思考的习惯;(2)熟练应用计算机处理数据的能力;(3)清晰的口头和文字表达能力;(4)团队合作的攻关能力;(5)收集和处理信息、资料的能力;(6)自主学习的能力。因此数学建模对完善学生的知识结构,提高综合素质和核心能力有着极大的促进作用。
二、本人的数学建模开展情况
本文自2004年指导学生参加北美数学建模比赛以来,开始从事数学建模的指导与教学工作。开始只负责北美数学建模比赛的辅导与比赛指导,后来陆续参与到数学建模的培训和相关课程的。2004年开始进行有系统的数学建模的教学及竞赛辅导工作,具体的工作包括:
1. 联系实际,挖掘教材内涵
数学建模作为本科教学实践的重要组成部分,将起到越来越重要的作用。因此我们在课程教学的时候,应当把数学建模的思想渗透进去,有利于培养学生对数学建模的兴趣,同时反过来也加强了学生对大学数学的兴趣。在培训初期,开始灌输数学模型的概念,并在教学过程中结合教学内容介绍数学建模的初步知识和建模的基本方法,改变过去单纯强调推理演绎的数学教学,强调理论与实际应用相结合。尽量在教学过程中加入一些有启发性,有实际背景的例子。例如,在讲授《统计学原理》的过程中可以通过实际问题模型。对实际问题进行定性分析,可以更好地了解集的形态。在学习《概率论》的时候,我们可以引入一些简单的概率模型,如决策模型,随机存储模型等,联系实际,加深对所学知识的理解,同时反过来引起对所学知识更加浓厚的兴趣。让同学们认识到“大学数学就在身边”。
2. 前期培训
由于每次比赛都是针对全校本科生公开选拔,因此每年都会吸引很多大一,大二的学生参加。而这些同学大都刚刚学习完成高等数学,而计算机课程,例如数据结构,C语言等课程的学习则刚刚开始。因此,我们采取了分组培训的方法。对低年级同学主要讲授关于数学建模的所需一些基本理论知识,例如概率论,微分方程,线性代数,统计学,复变函数等,和一些基本的最优化算法;而对高年级同学则主要培训数学建模中具有代表性的常用方法,并且按照不同类型的实际问题详细讲述不同类型的模型建立原则和方法;无论在哪个小组的学习中,数学软件都是必须教授的内容,因为在数学建模中所遇到的实际问题都要面临大量没有经过处理的原始数据,因此应用计算机进行数据的挖掘和处理是数学建模的一个重要环节。我们着重对学生介绍数学软件的学习和使用,例如Matlab,Mathematica等软件。同学们如果掌握了Matlab等现代化软件,一方面可以培养同学们的动手能力,激发同学们的兴趣,另一方面还可以培养同学们查找资料,解决分析问题的能力。对数学软件的学习,因为课时有限,主要是老师教导,以学生自学为主。
三、结语
经过几年的努力,我指导的小组在全国全国大学生建模竞赛合北美数学建摸竞赛中都取得的非常好的成绩。学生在比赛中和培训中,不仅系统地学习了运用各方面知识解决实际问题的能力,而且增强了自学能力和创新意识,提高了学生应用数学和计算机解决实际问题的能力。通过几年的工作,我深深体会到,数学建模涉及面很广,形式灵活,对教师的能力也提出了很高的要求,有助于师资水平的提高。
数学建模结课论文2000字 第6篇
一、数学建模与数学建模意识
数学建模是对实际问题本质属性进行抽象而又简洁刻划的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。而应用各种知识从实际问题中抽象、提炼出数学模型的过程,我们称之为数学建模。它的灵魂是数学的运用,它就象阵阵微风,不断地将数学的种子吹撒在时间和空间的每一个角落,从而让数学之花处处绽放。
高中数学课程新标准要求把数学文化内容与各模块的内容有机结合,数学建模是其中十分重要的一部分。作为基础教育阶段――高中,我们更应该重视学生的数学应用意识的早期培养,我们应该通过各种各样的形式来增强学生的应用意识,提高他们将数学理论知识结合实际生活的能力,进而激发他们学习数学的兴趣和热情。
二、高中数学教师必须提高自己的建模意识、积累自己的建模知识。
我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。数学建模源于生活,用于生活。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把高中数学知识应用于现实生活。作为高中数学教师,在日常生活上必须做数学的有心人,不断积累与数学相关的实际问题。
三、在数学建模活动中要充分重视学生的主体性
提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。
教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。
四、处理好数学建模的过程与结果的关系
我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。 五、数学建模教学与素质教育
数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。
1.构建建模意识,培养学生的转换能力
_曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。
2.注重直觉思维,培养学生的想象能力
众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。
3.灌输“构造”思想,培养学生的创新能力
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。