毕业论文建模(汇总13篇)

个人学习 11 0

毕业论文建模 第1篇

在小学数学教学中恰当地运用数学模型方法,揭示数学的本质,在接替过程中引发与选择思维方向,都具有很大的启发性。所以我们应当在教学中帮助学生逐步建构模型、应用模型,就是要求教师致力于数学建模的引领,让学生体验数学建模的过程,从而取得数学活动经验。它是把“创造过程中的数学”纳入数学教育的一种可行手段。

正如弗赖登塔尔所认为的:“学生自己发明数学就会学得更好”,“让他们经历数学化的过程,这是教学的第一原则”。

一、建模的策略

1、精选问题,创设情境,激发建模的兴趣。

数学模型都是具有现实的生活背景的,这是构建模型的基础和解决实际问题的需要。如构建“平均数”模型时,可以创设这样的情境:4名男生一组,5名女生一组,进行套圈游戏比赛,哪个组的套圈水平高一些?学生提出了一些解决的方法,如比较每组的总分、比较每组中的最好成绩等,但都遭到了否决。这时“平均数”的策略应需而生,构建“平均数”的模型成为了学生的需求,同时也揭示了模型存在的背景、适用环境、条件等。

2、充分感知,积累表象,培育建模的基础。

数学模型关注的对象是许多具有共同普遍性的一类事物,因此教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知这类事物的特征或数量相依关系,为数学模型的准确构建提供可能。如一年级“凑十法”模型构建的过程就是一个不断感知、积累的.过程。首先通过探究学习9加几的算法,初步了解凑十法;接着采取半扶半放的方式学习“8、7加几”的算法,进一步感知凑十法更广的适用范围;最后,学习6、5、4加几,运用凑十法灵活解决相关计算问题。学生经历了观察、操作、实践、讨论,体验到了“凑十法”的内涵,为形成“凑十法”的模型奠定了坚实的基础,提供了充分的准备。

3、组织跃进,抽象本质,完成模型的构建。

实现通过生活向抽象数学模型的有效过渡,是数学教学的任务之一。具体生动的情境问题只是为学生数学模型的建构提供了可能,如果忽视从具体到抽象的跃进过程的有效组织,那就不成其为建模。如四年级上册“平行与相交”,如果只是让学生感知火车铁轨、跑道线、双杠、五线谱等具体的素材,而没有透过现象看本质的过程,当学生提取“平行线”的模型时,呈现出来的一定是形态各异的具体事物,而不是具有一般意义的数学模型。而“平行”的数学本质是“同一平面内两条直线间距离保持不变”,教师应将学生关注的目标从具体上升为两条直线及直线间的宽度(距离)。可以让学生通过如下活动来组织跃进过程:

(1)提出问题:为什么两条直线永远不相交呢?

(2)动手实验思考:在两条平行线间作垂线。量一量这些垂线的长度,你发现了什么?你知道工人师傅是通过什么办法使两条铁轨始终保持平行的吗?

经历这样的学习过程,学生对平行的理解必定走向半具体半抽象的模型,从而构建起真正的数学认识。在这一过程的组织中,教师要引导学生通过比较、分析、综合、归纳、操作等思维活动,将本质属性抽取出来,构成研究对象本质的关键特征,使平行线完成从物理模型到直观的数学模型,再到抽象的数学模型的建构过程。

4、重视思想,提炼方法,优化建模的过程。

不管是数学概念的建立、数学规律的发现还是数学问题的解决,核心问题都在于数学思维方法的建立,它是数学模型存在的灵魂。如《圆柱的体积》教学,在建构体积公式这一模型的过程中要突出与之相伴的“数学思想方法”的建模过程。一是转化,这与以前的学习经验相一致,是将未知转化成已知;二是极限思想,这与把一个圆形转化为一个长方形类似,是在众多表面上形态各异的思维策略背后蕴藏的共同的具有更高概括意义的数学思想方法。重视数学思想方法的提炼与体验,可以催化数学模型的建构,提升建构的理性高度。 5、回归生活,变换情境,拓展模型的外延。

人的认识过程是由感性到理性再到感性循环往复、螺旋上升的过程。从具体的问题经历抽象提炼初步构建起相应的数学模型,并不是学生认识的终结,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升。如初步建立起来的“鸡兔同笼”问题模型,它是通过“鸡”、“兔”来研究问题、解决问题从而建立起来的。但建立模型的过程中不可能将所有的同类事物列举穷尽,教师要带领学生继续扩展考察的范围,分析当情境数据变化时所得模型是否稳定。可以出示如下问题让学生分析:

9张桌子共26人,正在进行乒乓球单打、双打比赛,单打、双打的各几张桌子?”“甲、乙两个车间共126人,如果从甲车间每8人中选一名代表,从乙车间每6人中选一名代表,正好选出17名代表。甲、乙两车间各有多少人?”……这样,便可使模型不断得以丰富和拓展。

二、拓宽建模的途径

开展数学建模活动,关注的是建模的过程而不仅仅是结果,更多的是培养思维能力,特别是创造能力。因此,在小学数学教学中要转变观念,革新课堂教学模式,以“建模”的视角来处理教学内容。

1、根据教学内容,开展建模活动。

教材中的一些内容已经考虑按照建模的思路编排,教师要多从建模的角度解读教材,充分挖掘教材中蕴含的建模思想,精心设计和选择列入教学内容的现实问题情境,使学生从中获得“搜集信息,将实际问题数学化,建立模型,解答问题,从而解决问题”的体验。

2、上好实践活动课,为学生模仿建模甚至独立建模提供有效指导。

重点应放在对问题背景、问题条件的考察以及模型建立过程的引导与分析上,力图使学生弄清其中所蕴涵的思维方式与方法。可以结合教材内容,适当对各种知识点进行整合,并使之融进生活背景,生产出好的“建模问题”作为实践活动课的内容。如苏教版六(上)安排了这样的问题:找10盒火柴,先在小组里拼一拼,看看把10盒火柴包装成一包有哪些不同的方法、怎样包装最节省包装纸。

3、改编教材习题,放大功能,使建模教学成为一种自觉行为。

教材上许多应用题已不是实际问题的原形,可以根据需要对一些题目进行开发,使其成为建模的有效素材。如将教材“从一点画一条已知直线的垂线”的内容改成:“从某村庄修一条到河边的小路,怎样最近?”再如教材中“正方形面积是8平方厘米,求其内接圆的面积”,如果只是一做了事,那么它的价值就不能完全体现出来。可以利用它开展建模活动:可以设圆的半径是r,探讨出圆的面积与正方形面积之间的关系:πr2/4r2=π/4,从而建立起关系模型,进而解决问题;也可以另辟蹊径,先通过“圆内接正方形面积是6平方厘米,求圆的面积”这一问题的解决,建立模型,圆的面积是正方形面积的 倍。再将原问题进行转化,从而获得解决。

学生学习数学模型的方法需要经历一个长期的、不断积累经验、不断深化的过程,需要教师在教学的实践中结合数学知识的教学反复孕育,让学生亲身经历建模过程。

毕业论文建模 第2篇

【摘要】首先阐述数学建模内涵;其次分析数学建模与数学教学的关系;最后总结出提高数学教学效果的几点思考。

【关键词】数学建模;数学教学;教学模式

什么是数学建模,为什么要把数学建模的思想运用到数学课堂教学中去?经过反复阅读有关数学建模与数学教学的文章,仔细研修数十个高校的数学建模精品课程,数学建模优秀教学案例等,笔者对数学教学与数学建模进行初步探索,形成一定认识。

一、数学建模

数学建模即运用数学知识与数学思想,通过对实际问题数学化,建立数学模型,并运用计算机计算出结果,对实际问题给出合理解决方案、建议等。系统的谈数学建模需从以下三个方面谈起。

1.数学建模课程。

“数学建模”课程特色鲜明,以综合门类为基础,重实践,重应用。旨在使学生打好数学基础,增强应用数学意识,提高实践能力,建立数学模型解决实际问题。注重培养学生参与现代科研活动主动性与参与工程技术开发兴趣,注重培养学生创新思维及创新能力等相关素质。

2.数学建模竞赛。

1985年,美国工业与应用数学学会发起的一项大学生竞赛活动名为“数学建模竞赛”。旨在提高学生学习数学主动性,提高学生运用计算机技术与数学知识和数学思想解决实际问题综合能力。学生参与这项活动可以拓宽知识面,培养自己团队意识与创新精神。同时这项活动推动了数学教师与数学教学专家对数学体系、教学方式与教学知识重新认识。1992年,教育部高教司和中国工业与数学学会创办了“全国大学生数学建模竞赛”。截止20xx年10月已举办有21届。大力推进了我国高校数学教学改革进程。

3.数学建模与创新教育。

创新教育是现代教育思想的灵魂。数学建模竞赛是实现数学教育创新的重要载体。如20xx年A题,葡萄酒的评价中,要求学生对葡萄酒原料与酿造、储存于葡萄酒色泽、口味等有全面认识;而20xx年D题,机器人行走避障问题,要求学生了解对机器人行走特点;20xx年B题,乘公交看奥运,要求学生了解公交换乘系统。大学生数学建模竞赛试题涉及不是单一数学知识。因此数学教师在数学教学中必须融合其它学科知识。同时学生参与数学建模竞赛有助于增强其积极思考应用数学知识创造性解决实际问题的意识。

二、数学建模与数学教学的关系

数学建模是数学应用与实践的重要载体;数学教学旨在传授数学知识与数学思想,激发学生应用数学解决实际问题的意识。数学建模与数学教学相辅相成,数学建模思想与数学教学将有助于提高教学效果,反之传统应试扼杀了学生学习数学的兴趣与主观能动性;数学教学效果,在数学建模过程中体现显著。

三、数学教学

1.数学教学“教”什么。电子科技大学的黄廷祝老师说:“数学教学,最重要的就是数学的精神、思想和方法,而数学知识是第二位的。”因此数学教师不仅要传授数学知识,更要让学生知道数学的来龙去脉,领会数学精神实质。

2.如何提高数学教学效果。提高数学教师自身素质是关键,创新数学教学模式是手段,革新评价机制是保障。

①提高数学教师自身素质。

数学教师自身素质是提高数学教学效果的关键。20xx年胡书记在《_关于加强教师队伍建设的意见》中明确提出,我国教育出了问题,问题关键在教师队伍。数学学科特点鲜明。若数学教师数学素养与综合能力不强,则提高数学教学效果将无从谈起。因此数学教师需通过如参加培训、学习精品课程、同行评教、与专家探讨等途径努力提高自身素养。

②创新数学教学模式。

毕业论文建模 第3篇

一、数学建模与数学建模意识

数学建模是对实际问题本质属性进行抽象而又简洁刻划的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。而应用各种知识从实际问题中抽象、提炼出数学模型的过程,我们称之为数学建模。它的灵魂是数学的运用,它就象阵阵微风,不断地将数学的种子吹撒在时间和空间的每一个角落,从而让数学之花处处绽放。

高中数学课程新标准要求把数学文化内容与各模块的内容有机结合,数学建模是其中十分重要的一部分。作为基础教育阶段――高中,我们更应该重视学生的数学应用意识的早期培养,我们应该通过各种各样的形式来增强学生的应用意识,提高他们将数学理论知识结合实际生活的能力,进而激发他们学习数学的兴趣和热情。

二、高中数学教师必须提高自己的建模意识、积累自己的建模知识。

我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。数学建模源于生活,用于生活。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把高中数学知识应用于现实生活。作为高中数学教师,在日常生活上必须做数学的有心人,不断积累与数学相关的实际问题。

三、在数学建模活动中要充分重视学生的主体性

提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。

教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。

四、处理好数学建模的过程与结果的关系

我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的'习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。五、数学建模教学与素质教育

数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。

1.构建建模意识,培养学生的转换能力

_曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。

2.注重直觉思维,培养学生的想象能力

众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。

3.灌输“构造”思想,培养学生的创新能力

“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。

毕业论文建模 第4篇

内容摘要】本文针对数学建模对上海工程技术大学大学生创新能力的培养进行了研究,通过对参与数学建模的师生进行深度访谈和问卷调查,利用软件进行主成分分析,得到影响创新能力的主要因素和次要因素。结合院校教育教学实践,分析其存在的问题并提出改进意见。

关键词】数学建模;创新能力;主成分分析法

一、上海工程技术大学对学生创新能力的培养

数学建模是通过对实际问题进行合理假设,用数学语言、数学方法抽象出与实际问题近似的数学模型,通过对数学模型求解,解决实际生产、生活问题。数学建模对使用的方法、利用的工具都不加以限制,由于其创造性、趣味性、可参与性吸引了很多大学生参加,从建立模型到得出结果,学生分析问题的能力、创新能力、动手实践能力都得到了提高,数学的思维也在无形中加深。院校对数学教育非常重视,数理与统计学院践行了“数学建模为载体的数学应用能力‘六点一线’培养模式”,从而提高学生的数学应用能力和创新能力。以《高等数学》等课程的教学平台为起步,利用第二课堂进行普及,通过校级数学建模竞赛选拔人才,以集中培训为平台提高学生数学建模能力,参加国内外数学建模竞赛展示学生数学建模水平。以大学生创新实验和科研作为拓展平台,培养学生数学应用与创新能力。通过对学生数学建模能力的培养提高他们的数学应用能力和创新能力。

二、数学建模对大学生创新能力影响的理论分析

创新能力是指在创新意识的基础上提升分析问题、解决问题的`能力。从各个角度去看问题,全面地看问题抓住其关键,能够用自己的观点对问题进行解释,运用各种方法解决问题,从中选取最优解决方法。对于创新能力测评的方法有很多,如:主成分分析法、层次分析法、变异系数加权法、因子分子法等。层次分析法是根据各因素间的关系,通过各层特征向量构造上层与下层的权重矩阵;变异系数加权法是计算各因素的变异系数且根据其相对大小确定指标权重;主成分分析法是将多个相关变量转化为少数几个综合指标,将这些综合指标作为主成分,每个主成分都能反映问题的部分信息。本文采用主成分分析法对创新能力指标进行量化分析。

三、模型变量选取

通过对参加数学建模的师生进行深度访谈以及查阅资料分析后得出,影响创新能力的因素主要为智力因素和非智力因素,其中以智力因素为主。智力因素指认知活动的操作系统,智力因素中对创新能力产生的主要影响是注意能力、逻辑思维能力、形象思维能力;非智力因素主要是个性心理因素和思想因素。在此基础上选定原因变量为:观察能力、注意能力、想象能力、记忆能力、逻辑思维能力、形象思维能力、灵感、直觉、顿悟思维能力、个性心理因素和思想因素,以变量的提升程度作为指标,结果变量则选择为创新能力的提升程度。数学建模的实际问题中往往存在一些小细节,观察能力决定了这些小细节是否能被找到;注意力集中才能专心于数学建模,不被外界打扰,这在数学建模竞赛中尤为重要;合理的想象才能创造有价值的新思想;记忆能力指数学建模时在理解中提高记忆力;逻辑思维能力指利用概念、判断、推理等思维形式通过一定的方式得出事物的本质和规律,这无论在分析题目还是建模、编程中都非常重要;利用形象思维能力能把理论的题目结合自己的感观通过语言、图像等形式进行描述;灵感、直觉、顿悟思维能力代表了创造性的突发思维和突如其来的领悟;而个性心理因素指人的求知欲、好奇心、兴趣爱好等;思想道德能力则是指人的世界观、人生观、价值观。

四、模型的建立与求解

为了得到学生创新能力提升的情况,对参加过数学建模的学生进行调查问卷,问卷题目为参加数学建模活动和竞赛后各个能力的提升程度,选项为提升很大、略有提升、没什么变化和退步,将选项转化为数据,分别为1、、、0。回收有效调查问卷共285份,对调查问卷利用进行分析,利用主成分法,得到主成分的系数矩阵,系数代表了原因变量的线性方程中不同成分的权重,数值越大,对这个指标的影响越大。通过表1可以看出,第一个主成分反映的是思想能力、形象思维能力和逻辑思维能力,这个主成分的方差占总方差的比例最大,所以在数学建模影响创新能力的因素中思想能力、形象思维能力和逻辑思维能力是影响最大的,严谨的逻辑思维、良好的形象思维以及正面向上的观念对于创新能力是不可或缺的。第二个主成分反映的是个性心理能力,分析其方差占总方差的比例得出,个性心理能力对创新能力影响较大,兴趣爱好、好奇心等心理因素的培养对创新能力的提高能起到一定的作用。第三个主成分体现了想象力,由于第三个主成分所占比例较小,所以得出想象力对创新能力有一定影响,但是影响较小,合情合理的天马行空能带来不一样的创新。通过分析问卷中创新能力提升程度的数据,的学生觉得通过数学建模创新能力得到了较大的提升,而的学生觉得通过数学建模创新能力略有提升,的学生则认为数学建模后创新能力没有变化甚至略有退步。可见,只有少数学生认为通过数学建模能够大幅度提升自己的创新能力,而大部分的学生都是认为略有提高。数学建模对院校学生创新能力的确起到了一定的促进作用。

五、结语

在调查问卷中发现,大学数学主干课程和第二课堂对于数学建模和创新能力的培养还不够深入,而校级选拔平台要求较低以及创新实验和科研未能普及都导致了数学建模对创新能力的促进较小。集中培训和建模竞赛的参与人数较多及其应用能力更强导致了更能提升学生的创新能力。因此,可以提出一些改进措施,大学数学主干课程和第二课堂对于创新能力的培养应该更深入一些,这样可以在潜移默化中给学生带来积极的影响。而校级选拔平台则可以增添一定的趣味性或挑战性以此吸引学生进行挑战。创新实验和科研平台则可以增加其普及率来吸引学生,培养更多的创新型人才。

参考文献

[1]张清华,杨春德,沈世云.以数学建模竞赛为契机,加强对学生创新能力的培养[J].重庆邮电大学学报(自然科学版),20xx,20(1):121~123

[2]刘冬梅.大学生数学建模竞赛与教学策略研究[D].山东师范大学,20xx

[3]许先云,杨永清.突出数学建模思想,培养学生创新能力[J].大学数学,20xx,4:137~140

[4]彭健伯,欧美强.应用型人才创新能力培养与创新能力测评方法研究[J].科技进步与对策,20xx,1:102~104.

毕业论文建模 第5篇

近几年来,随着社会的不断进步带动着经济的稳步发展,人们对住房的需求不断的增大,因此房屋建筑行业的规模也不断地扩大,房屋建筑行业进入黄金时期。随着建筑房屋越来越多,人们对建筑工程的要求也越来越严格。很多建筑工程在施工过程中存在着许许多多的缺陷,施工技术的不当会造成建筑质量大大下降,因此,建筑工程的施工技术必然要通过不断的改革和进步来达到建筑工程的需求[1]。随着各种先进施工技术的不断推广和运用,模板施工技术是施工技术中的一种,这项施工技术推广应用以来取得显著地效果,大大提高了房屋建筑的质量,促进了建筑工程行业的发展。

1模板施工技术介绍

(一)模板施工技术概括

模板施工技术是指主要借助钢、铁、杠杆等工具,对施工建筑形成支撑,在水泥等建筑中,实现了对房屋建设的形状、大小和构造进行有效控制,保证建筑的稳定性。模板施工技术运用过程中所需要的材料不是固定不变的,它随着每个建筑工程的施工阶段对于材料的需求做出改变。模板施工技术具有较强的适应性、安全性和可靠性。模板施工技术的正确使用能够帮助塑造建筑工程的结构和形态,帮助建筑工程进行有效的定位。

(二)主要模板施工技术

建筑工程中模板施工技术多种多样,其中最常见的技术有钢筋绑扎技术、大模板安装技术、混泥土浇筑技术、抄平放线技术。1.钢筋绑扎技术。在模板施工技术中,钢筋绑扎技术是所有技术中要点和难点,钢筋绑扎技术主要应用于曲线混凝土的施工过程中。钢筋绑扎技术需要在曲面混凝土溢流段浇筑施工完成之后对钢筋进行绑扎。这样一来,可以混凝土模板更具有稳固性和防止雨水冲刷的特性,这一技术的应用促进了建筑工程施工的进度。2.大模板安装技术。在大模板安装过程中需要注意的是,模板安装的顺序和方向,必须将横向模板先进行安装,在对竖向模板进行安装。借助塔机等工具把大模板吊进需要安装的位置,然后再使用撬棒来调整大模板的安装位置。再把穿墙螺栓的塑料套管放置在两块模板中间,以此来控制墙体的厚度。安装完毕后使用靠尺来检查墙体是否垂直。在进行垂直度的检查中,要使用到地脚螺栓,通过它对墙体垂直进行调整。墙面和地面连接的地方容易出现漏浆现象,使用钢模板能防止墙面漏浆。在各个工作完成后,要针对扣件和螺栓进行检查。3.混凝土浇筑技术。混凝土浇筑技术需要在大模板安装完毕后使用,首先,应该进行浇筑材料的配置、搅拌,最后才能进行浇筑[2]。混凝土浇筑完成后,对混凝土实行养护是必要的,保证混凝土的正常硬化。主要的养护方法为太阳能养护和自然养护。在对混凝土的养护过程中,需要对混凝土的温度和湿度进行控制。保护混凝土暴露面的水分。4.抄平放线技术。选在抄平放线技术中对轴线控制桩的选择至关重要,再把它放在建筑的四个角落里,必须使用经纬仪对楼层控制轴线进行精准测量,在利用钢尺画出模板的边线。

2模板施工技术的应用分析

(一)模板施工技术应用

模板施工技术是建筑工程中最常见的施工技术,模板施工技术毕竟能弥补传统施工技术的不足,还能节约工程施工的成本,提高工程建筑的质量与稳定性。模板施工技术在建筑工程中运用的优势主要有:第一,模板的使用位置以及大小和形状满足建筑工程的需要。第二,模板具有较强的承受能力和稳定性。第三,模板的构造简单有利于建筑工程搬运。第四,使用模板的过程中要保证模板和地面的连接处的紧密,保证不漏浆。对模板的使用必须按照规章、标准来对模板进行配样,在模板制作过程中必须使用精密的仪器进行换算,确保制作出尺寸合适的模板。

(二)模板配置技术应用

建筑工程中对建筑模板的配置必须按照严格的要求进行,保证尺寸大小上符合建筑工程图纸的要求。结构简单的模板可以按照建筑工程图纸进行设计匹配,但在对于较为复杂模板进行配样时,必须根据图纸和实际尺寸的比例要求计算出适合的尺寸大小,最后对换算出来的模板进行加工制作。

(三)对建筑模板加固

建筑模板加固工作是在模板制作完毕之后,在把建筑模板安装到墙体中之后,为了防止模板和墙体的接口处漏浆,必须对已经安装的建筑模板进行加固。建筑模板加固必须从模板与墙体的破洞口进行处理,确保模板的牢固,防止模板松动出现脱落。可以使用其他道具对模板进行固定,比如水平钢管。在安装模板的过程中应该要保证模板与地面的垂直。制造模板的过程中,可以使用焊线拉钢筋保证模板和墙体之间的接触面积尺寸的准确。

(四)楼梯模板安装

楼梯模板安装为楼梯加大支撑点,加大楼梯的稳固性和承受能力。在对楼梯模板进行安装中,可以根据施工图纸,首先对楼梯安装平台梁,再安装平台模板。除了要对楼梯表面模板进行安装,还要对楼梯底部进行模板安装,同时要保证各个头题模板安装过程中模板间的距离相一致[3]。模板安装完毕后,使用钢筋绑扎在帮板上装订踏板,保证模板在安装的过程中始终在同一水平线上。

(五)桩模的安装工作

桩模的安装工作是模板施工技术中的重点和难点,桩模安装之前,首先应该设置立愣,通过量尺测量立楞之间的距离,确保每段立楞之间的距离相一致。立楞是由普通木材制作而成,为了固定立楞可以使用水平钢管对其固定,在桩模安装过程中经常会出现桩模倒塌的现象,为了避免这种情况的出现,需要使用水平撑拉进行固定。

3完善模板施工技术的措施

(一)加强施工现场管理

为了完善建筑工程模板施工技术,建筑工程单位需要对施工现场进行管理。施工现场的管理不仅仅指对施工现场安全进行监管,更多的是要随时检查施工现场的工具,工具是否损坏、材料是否充足等,如有发现现场模板损坏应该立即禁止使用,在模板的搭建和拆除过程中应该进行严格的监控,建筑工程施工之前要对施工人员交代工作以及注意事项。另外,模板的更换要进行严格的审判。

(二)实施模板施工安全管理制度

模板施工安全管理制度是工程建筑必不可少的制度之一。实施模板施工安全管理制度能够有效地防止建筑公司在模板施工过程中出现偷工减料、工程违章操作等现象,模板施工安全管理制度能保证工程施工在施工过程中的质量与进度。制度不仅仅是为了制定而生,模板施工安全管理机制应该对施工现场进行实时监督。(三)制定相应的安全技术措施项目负责人具有制定相关的安全技术措施的职责和权利,工程建筑在施工过程中多多少少会出现事故,如何把事故的发生降到最低是工程项目负责人应该思考的问题,项目负责人应该根据现场施工的情况制定出相应的安全技术措施,并不断的对安全措施进行更改,保证现场施工的安全,保证施工能够顺利进行。

毕业论文建模 第6篇

0 前言

技术分析是一门古老而又崭新的学问。查尔斯•道(Charles Dow)于20世纪初在华尔街日报上撰写的一系列社论标志着技术分析的诞生,至今已有超过百年的历史。虽然技术分析在金融实业界得到了广泛的关注和应用,但是金融学术界却较少关注它,原因在于技术分析的基本理念――价格的可预测性――与现代金融理论的两大基石之一的有效市场假说是背道而驰的。然而随着越来越多的学者通过实证研究发现支持技术分析有效的证据,以及为技术分析提供理论支持的各种理论模型的出现,技术分析更多地进入了金融学者的视野。

在技术分析理论基础模型中,有一类模型通过建立由基本面分析者和技术分析者构成的市场,进而研究各类市场参与者对市场价格动态行为的影响。这些文献以Beja和Goldman(1980)、Schmidt(1999,2000,2002)以及Caginalp和Balenovich(2003)为代表。

本文在上述文献建模思想的基础上,建立了一个包含基本面分析者、技术分析者与噪音交易者的市场,设定了各个市场参与者的需求函数以及价格动态规则,并在模型框架内推导出价格动态行为的解析形式以及对应的参数约束条件。此外,本文在模型框架内以解析推导的方式(非数值解)研究了基本面分析者与技术分析者各自的投资收益率变化的规律,发现在一定条件下,基本面分析者收益率严格为正,而技术分析者收益率可正可负,并且基本面分析者规模与基本面分析者收益率正相关,与技术分析者收益率负相关,从而从一个角度揭示了技术分析具有价值的内在原因。虽然建模思想一致,但是本文所建立的模型与已有文献中的模型结构有所不同,模型具有良好的数学形式和丰富的经济含义,以严格的数学推导替代已有模型中的数值分析,并分析了已有模型中未曾讨论的但具有重要意义的问题。

1 模型

市场参与者

假设市场中有一种股票和三类交易者:基本面分析者、技术分析者和噪音交易者。

基本面分析者通过研究股票的基本面信息确定其内含价值,并根据市场价格与内含价值的相对关系决定自己的买卖策略。当基本面分析者发现股票的市场价格低于(高于)其内含价值时,他就决定买进(卖出)股票。基本面分析者的存在使得股票价格在偏离其基本面价值时,有向基本面价值回归的趋势。

技术分析者采用趋势跟随策略。也就是说,当前期股票价格上涨(下跌)时,技术分析者就会买进(卖出)。本模型关于技术分析者特点的设定既符合技术分析手册的假设,也与已有技术分析理论基础模型研究的文献相一致。

噪音交易者没有特定的买入或卖出需求,他们充当市场的流动性提供者,消化基本面分析者和技术分析者形成的超额需求或超额供给。噪音交易者是供求均衡所必需的市场参与者。

需求函数

假设基本面分析者具有一致的信念,他们认定的基于基本面信息的股票内含价值为P*(t)。同时假设市场价格为P(t)。基本面分析者根据上期市场价格P(t-1)与本期内含价值P*(t)的相对关系确定本期的买卖策略,而技术分析者根据上期价格与上上期价格的变化趋势来确定本期的买卖策略。

假设基本面分析者和技术分析者在t期的净需求分别为

其中,NF≥0,NT≥0,

NF和NT表示基本面分析者和技术分析者的相对数量关系,NF越大,表示市场中基本面分析者越占主导地位;反之NT越大,表示市场中技术分析者越占主导地位。

基本面分析者需求函数DF(t)的定义的含义是,基本面分析者是市场价格的稳定剂。市场价格向下(向上)偏离股票内含价值的幅度越大,基本面分析者形成的净需求(供给)就越大,从而使价格回复到内含价值水平的推动力也就越大。

技术分析者需求函数DT(t)的定义的含义是,技术分析者完全是趋势跟随者。前期市场价格上涨(下跌)幅度越大,技术分析者形成的净需求(供给)就越大。因此技术分析者的行为会使价格按照已有趋势进一步发展下去,如果价格处于上升(下降)趋势中,技术分析者的交易将使得价格进一步上升(下降)。

基本面分析者与技术分析者的共同作用将会使得价格运动呈现振荡走势,这一点将在后文中给予详细分析。

最后我们定义总的净需求

Dex(t)=DF(t)+DT(t)(3)

价格动态方程

参照已有文献,假设价格的变化与净需求呈线性关系,即

P(t)=P(t-1)+Dex(t)(4)

在通常的模型设定中,Dex(t)前会有一个系数,在我们的模型中,这个系数已经消化在NF和NT中,因此无需再引入一个额外的参数。

至此,我们构建了一个价格动态系统,其中P*(t),NF,NF为外生参数。

2 模型性质推导和经济含义分析

价格动态分析

为简化起见,本文只讨论内含价值为常数的情形,令P*(t)=P*。

令f(t)=P(t)-P*,则

f(t)=(1-NF+NT)f(t-1)-NFf(t-2)(5)

利用特征方程求解通项可得,当NT>1时,f(t)是发散的;当0

NT代表技术分析者的相对数量。由前面的模型推导我们可以看出,当技术分析者相对数量较大时(NT>1),他们的行为会加剧股价原有的趋势。尽管基本面分析者的存在使得价格还有向内含价值靠拢的动力,但是技术分析者强劲的推动力使得股价不断发散。当技术分析者相对数量较小时(NT

投资收益率比较

在本小节中,我们考察基本面分析者和技术分析者各自的投资收益率,比较两种交易者谁的收益率更高,谁的投资策略更有效。为简化起见,我们只考虑NT=1,即永续振荡型股价运动的情况。

定义r(t)=(P(t)-P(t-1))/P(t-1)。

投资者从t-1时刻到 时刻的收益率取决于其在t-1时刻建仓的方向,也就是说,如果投资者在t-1时刻买入的话,那么他从t-1时刻到t时刻的收益率就等于r(t);相反如果投资者在t-1时刻卖出的话,那么他从t-1时刻到t时刻的收益率就等于-r(t),因此我们定义:

其中,sign是符号函数。

定义基本面分析者和技术分析者的加权平均收益率分别为:

下面我们首先分别讨论基本面分析者和技术分析者各自的收益率情况,然后将二者进行比较。

(1)基本面分析者收益率分析

可以证明F关于NF是单调不减的。

当NF0时,F0,

当NF=1时,rF(π/6P*)3(f2(1)+f2(2)-f(1)f(2))

由此我们得到结论:

基本面分析者的加权平均收益率与基本面分析者的规模呈正相关关系。基本面分析者规模越大,他们就越可以主导市场,其投资收益率也就越高;反之,基本面分析者规模越小,他们就越受制于市场中的其他交易者(技术分析者),其投资收益率也就越低。另一个重要的结论是,由于基本面分析者是掌握信息的群体,因此他们的加权平均收益率总是大于零的。

(2)技术分析者收益率分析

T π4P*f2(1)+f2(2)+(NF-2)f(1)f(2)4-NF(N2F-4NF+2)(10)

毕业论文建模 第7篇

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的'空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受

到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

毕业论文建模 第8篇

一、数学建模思想与大学数学类课程教学的融合切入点

1、从应用数学出发数学建模主要是通过运用数学知识解决生活中遇到实际问题的全过程。要让数学建模思想与大学数学教学课程进行有效的融合,最佳切入点就是课堂上把用数学解决生活中的实际问题与教学内容相融合,以应用数学为导向,训练学生综合运用数学知识去刻画实际问题、提炼数学模型、处理实际数据、分析解决实际问题的能力,培养学生运用数学原理解决生活问题的兴趣和爱好。授课过程中,要改变以往单纯地进行课堂灌输的行为,多引入应用数学的内容,通过师生互动、课堂讨论、小课题研究实践等多种形式灵活多样的教学方法,培养引导学生树立应用数学建模解决实际问题的思想。

2、从数学实验做起要加强独立学院学生进行数学实验的行为,笔者认为数学建模与数学实验有着密切的联系,两者都是从解决实际问题出发,当前的大学生数学实验基本上是应用数学软件、数值计算、建立模型、过程演算和图形显示等一系列过程,因此进行数学实验的全过程就是数学建模思想的启发过程。但是我国的教育资源和教学方针限制了独立学院学生的学习环境和学习资源,能够进行数学实验的条件还是有限的。即使个别有实验能力的学校,也未能进行充分利用,数学实验课的内容随意性较大,有些院校将其降格为软件学习课程或初级算法课。根据调研,目前大部分独立学院未开设此类课程,这是数学建模思想与大学数学教学课程融合的一大损失,不利于学生创新思维能力的提高。各校应当积极创造条件,把数学实验课设为大学数学的必修课,争取设立数学建模选修课,并积极探索、逐步实现把数学建模的思想和方法融入大学数学的主干课程。

3、从计算机应用切入数学是为理、工、经、管、农、医、文等众多学科服务的基础工具,它在不同的领域因为应用程度不同而导致被重视的程度不同。但在当今的信息化时代,计算机的广泛应用和计算技术的飞速发展,使科学计算和数值模拟已成为绝大多数学科的必要工具和常用手段。数学在不同学科领域有了共同的主题,即应用数学建模,通过计算机对各自领域的科学研究、生活问题等进行模拟分析,这成为数学建模思想在跨学科领域交流和传播的.一个重要途径。每个领域的教学可以计算机应用为切入点,让数学建模思想与数学授课无缝结合,在提高学生掌握知识能力、挖掘培养创新思维的同时,增加了大学数学课程内容的丰富性、实用性,促进教学手段变革和创新。因此,大学应以适应现代信息技术发展的形势和学生将来的需求为契机,加快改进大学数学课程教学方式,把数学建模的思想和方法以及现代计算技术和计算工具尽快融入大学数学的主干课程当中。

二、探索适合独立学院学生的数学建模教学内容

大学数学课程是大学工科各专业培养计划中重要的公共基础理论课,其目的在于培养工程技术人才所必备的数学素质,为培养我国现代化建设需要的高素质人才服务。数学建模课程的必修化,要从能够扩充学生的知识结构,培养学生的创造性思维能力、抽象概括能力、逻辑推理能力、自学能力、分析问题和解决问题能力的角度出发,建立适合独立学院学生的数学建模教学内容。日前独立学院开展数学建模活动涉及内容较浅,缺少相应的数学建模和数学实验方而的教材。笔者近几年通过承担此类课题的研究,认为应该加强以下内容的建设:

1、加强对计算机语言和软件的学习,对数学原理进行剖解分析,多分析运行数学解决的社会生活问题,多设定课程设计工作。学生通过对科学问题、生活问题的深入研究,结合自己的课程设计,建立数学建模,让数学建模思想渗透到整个学习过程中。对非数学领域的问题,引导学生通过计算机软件的学习,建模解决专业中遇到的实际问题。比如通用的CAD等基于数学理论,解决不同领域的数学建模问题,以便将来适应社会的需要

。2、开设选修课拓展知识领域,让学生可以通过选修数学建模、运筹学、开设数学实验(介绍Matlab、Maple等计算软件课程),增加建立和解答数学模型的方法和技巧。比如以前用的“文曲星”电子词典里的贷款计算,就是一个典型的运用数学模型方便百姓自己计算的应用。这个模型单靠数学和经济学单方面的知识是不够的,必须把数学与经济学联系在一起,才能有效解决生活中的问题。

3、积极组织学生开展或是参加数学建模大赛比赛是各个选手充分发挥水平、展示自己智慧的途径,也是数学建模思想传播的最好手段。比赛可以让各个选手发现自己的不足,寻找自身数学建模出发点的缺陷,通过交流,还可以拓展学生思维。因此,有必要积极组织学生参入初等数学知识可以解决的数学模型、线性规划模型、指派问题模型、存储问题模型、图论应用题等方面的模拟竞赛,通过参赛积累大量数学建模知识,促进数学建模在教学中扮演更重要的角色。教师应该对历年的全国大学生数学建模竞赛真题进行认真的解读分析,通过对有意义的题目,如20xx年的《葡萄酒的评价》、《太阳能小屋的设计》,20xx年的《交巡警服务平台的设置与调度车灯线光源的计算》、20xx年的《眼科病床的合理安排》等,与生活相关的例子进行讲解分析,提高学生对数学建模的兴趣和对模型应用的直观的认识,实现学校应用型人才的培养。

4、加快教育方式的转变高等教育设立数学这门学科就是为了应用服务,内容应重点放在基本概念、定理、公式等在生活中的应用上。而传统的高等数学,除了推导就是证明,因此,要对传统内容进行优化组合,根据教学特点和学生情况推陈出新,要注重数学思想的渗透和数学方法的介绍,对高等数学精髓的求导、微分方法、积分方法等的授课要重点放在解决实际生活的应用上。要结合一些社会实践问题与函数建立的关系,分析确定变量、参数,加强有关函数关系式建立的日常训练。培养学生对一些问题的逻辑分析、抽象、简化并用数学语言表达的能力,逐步将学生带入遇到问题就能自然地去转化成数学模型进行处理的境界,并能将数学结论又能很好反向转化成实际应用。

三、注意的问题

21世纪我国进入了大众教育时期,高校招生人数剧增,学生水平差距较大,需要学校瞄准正确的培养方向。通过对美国教学改革的研究,笔者认为我国的数学建模思想与大学数学教学课程融合必须尽快在大学中广泛推进,但要注意一些问题:第一,数学教学改革一定要基于学生的现实水平,数学建模思想融入要与时俱进。第二,教学目标要正确定位,融合过程一定要与教学研究相结合,要在加强交流的基础上不断改进。第三,大学生数学建模竞赛的举办和参入,要给予正确的理解和引导,形成良性循环。要根据个人兴趣爱好,注重个性,不应面面强求。第四,传统数学思想与现在数学建模思想必须互补,必修与选修课程的作用与角色要分清。数学主干课程的教学水平是大学教学质量的关键指标之一,具备数学建模思想是理工类大学生能否成为创新人才的重要条件之一。两者的融合必将促进我国教学水平和质量的提高,为社会输送更多的实用型、创新型人才。

毕业论文建模 第9篇

一、在高等数学教学中运用数学建模思想的重要性

(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。

(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。

(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。

二、高等数学教学中数学建模能力的培养策略

1.教师要具备数学建模思想意识

在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。

2.实现数学建模思想和高等数学教材的互相结合

教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。

3.理清高等数学名词的概念

高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学

教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。

4.加强数学应用问题的培养

高等数学中,主要有以下几种应用问题:

(1)最值问题

在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。

(2)微分方程

在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。

(3)定积分

微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。

三、结语

总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。

毕业论文建模 第10篇

一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的.数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当数学建模论文格式模板以及要求数学建模论文格式模板以及要求。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明数学建模论文格式模板以及要求论文。

(七)数学建模论文模板

1. 论文标题

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

毕业论文建模 第11篇

摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。

关键词:小学数学;建模;运用

数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。

一、培养学生数学建模意识

数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。

二、提高学生想象力,用数学建模简化问题

对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的'数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。

三、选择合适的题目作为建模案例

在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。

四、引导学生主动进行数学建模

在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。

毕业论文建模 第12篇

众所周知,21世纪是知识经济的时代。所谓知识经济,是以现代科学技术为核心,建立在知识和信息的生产、存储、使用和消费之上的经济;是以智力资源为第一生产力要素的经济;是以高科技产业为支柱产业的经济。知识创新和技术创新是知识经济的基本要求和内在动力,培养高素质、复合型的创新人才是时展的需要。创新型人才是指具有较强的创新精神、创新意识和创新能力,并能够将创造能力转化为创造性成果的高素质人才。而数学建模活动则旨在培养学生的创新意识和创新能力、应用意识和应用能力。[1]为此,国外在20世纪80年代就开始举办数学建模竞赛,我国也于1994年开始由中国工业与应用数学学会和教育部高教司联合举办一年一次的全国大学生数学建模竞赛,极大地推动了高校数学教学的改革。随着全国大学生建模竞赛进入二十个年头,参赛学校越来越多。到2011年,有来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国、伊朗的1251所院校、19490个队(其中本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。在组织和培训学生参赛过程中,积累了一些经验,但还存在许多问题,特别是数学建模教学的目标与短期利益要求不一致的问题,需要相关人员继续努力,推动数学建模教学,提高学生应用数学解决实际问题的能力和素质。

一、高职院校数学建模教学现状

2003年,湖北省数学建模竞赛组委会在襄樊职业技术学院召开全国大学生数学建模研讨会,各高职院校派教师参加了会议。会后,经过学院领导的批准,湖北职业技术学院(以下简称“我院”)选派了两个代表队参加全国数学建模竞赛,以后每年都自己组织选拔学生参加这项竞赛。开始的几年,数学建模教学实际上只停留在赛前培训上。由于硬件原因,培训过程仍然是上理论课多,学生实际动手的少,加之每年参赛队数的限制,使得数学建模教学变成只是为竞赛培训而进行,学生受益面很有限,在学生中的影响也很小。参加竞赛开始的几年,由于领导重视,指导教师的努力,同时我院在2005年投资建立了应用数学实验室,为数学建模提供了一定的硬件基础,使得数学建模教学能够实现培养学生动手能力的目标。再加上学生的勤奋,因此,在2005年前取得了四个全国二等奖和三个湖北省一等奖、一个湖北省二等奖的好成绩;但是随着我院工作重心的转移,数学课程教学时数的大幅压缩,招收学生的数学素质的逐步下降,加之数学建模竞赛实际上赛的是学生的应用数学的能力和素质,仅靠短期的培训往往收效不大,所以近几年竞赛成绩都不太理想,和同类院校相差较大,也直接影响到数学建模教学的发展。

为了改变这种不利的局面,根据专业计划的调整进行数学教学改革,进一步推动数学建模教学,在相关专业开设数学建模与数学实验选修课程,实现真正意义上的数学建模教学。为了进一步扩大影响和学生的受益面,鼓励学生成立数学建模协会,我院每年举办一次应用数学知识校内竞赛,使得数学建模教学大大地前进了一步。

二、高职院校数学建模教学中存在的问题

随着高职院校参加各种专业技能竞赛的增加,数学建模竞赛在高职学生中的影响渐渐下降,学生参加数学建模竞赛的积极性也逐渐下降。同时,数学建模教学存在的问题仍然很多。首先是竞赛成绩与数学建模教学目标之间存在的矛盾。如前所述,数学建模竞赛赛的是学生应用数学的综合素质,而且举办数学建模竞赛的初衷是推动数学教学改革,只有把数学建模的思想方法融入到高职数学课程的整个教学中,才能实现数学建模教学的目标。随着参加数学建模学生的增加,各高职院校在数学建模实践设备的投资严重不足,设备老化没有更新,不能满足竞赛队员的培训,在很大程度上制约了数学建模教学的发展。

其次,对数学建模缺乏应有的宣传,直接影响了学生参与热情,因而降低了应有的受益面。相对其它活动,数学建模的相关信息在各高职院校的新闻报道中很少听到、见到,也没有场地用来开展数学建模协会的活动,即使是教师进行数学建模的讲座场地,也要经过多方审批。多年来,高职院校经常将获奖学生的奖励包括奖金直接发给学生,没有举行颁奖仪式,重视程度也大大不及学生的专业竞赛和文体活动,这说明这方面的工作确实有较大的问题。

第三,学校的政策层面也对教师进行数学建模教学鼓励不够,甚至有些政策直接减少了教师在数学建模教学上的投入。追求科研项目、科研论文,使得教师没有足够的精力投入到数学建模教学中,有的纯粹是应付差事、对付数学建模竞赛,根本达不到通过数学建模教学提高学生应用素质的效果。急功近利的短视行为,很大程度上影响着数学建模竞赛和数学建模教育的健康发展。把目标仅仅放在获奖上,而忽略了数学建模教学和学习的规律,不在开发思路与培养能力上下工夫,只在注重历年建模题型、所用工具的训练上做文章,到真正遇到实际问题或者没见过的类型时,就会一筹莫展。制约数学建模教学的根本问题还在于高等数学基础课程开设不够,甚至很多专业根本就没有开设,即使开设高等数学的专业也只开设了一个学期的微积分,只靠一个学期的高等数学课和一个多月数学建模培训,想要提高学生的应用数学素质实非易事。

三、推动数学建模教学,培养学生应用数学素质的措施

为了数学建模教学健康发展,提高学生应用数学素质,一方面需要好的政策和领导的重视,更重要的是数学教师自己的努力。因此,可以采取以下措施来推动数学建模教学,培养高职学生的应用数学素质。

首先,根据制约数学建模教学的根本问题,鼓励和要求从事数学建模教学的教师利用高等数学课程的教学,改造学生的数学知识结构,培养学生的数学思维。由于高职学生普遍缺少足够的数学建模能力和相应的数学建模教育,导致他们难以体验到数学应用性的特点,因而数学学习兴趣不高。数学在实际生活中的运用,往往需要经过数学建模的过程。数学建模能力不足,学生难以体验数学的运用,从而感觉不到数学的应用性,导致学生数学学习兴趣不高。因此在高等数学的教学内容中增加与生活实际和专业相关的实际问题,鼓励和要求从事数学课程教学的教师把数学建模的思想方法融入到整个教学活动中,使学生能更好地进行数学建模的学习和实践,进而提高分析问题、建立数学建模、求解模型、解决实际问题的能力。[2]

其次,可以在高等数学的教学中,开展数学建模周活动,拿出一到二周时间进行数学建模的教学,主要讲述数学建模的一般原理和建模方法,布置与生活实际和专业相关的问题,让学生用数学建模的方法去解决,并写出论文报告,作为学生的高等数学学业成绩的一部分。

第三,继续开设数学实验课程,让学生体会到数学也可以这样学,数学也可以解决身边的实际问题,体会到数学的应用价值,同时结合计算机的操作以提高学生学习数学的积极性。

第四,加强数学建模的宣传力度,利用新闻广播、报纸、宣传橱窗、电子网络学习平台进行数学建模的相关报道,向数学建模教学开展好的学校学习,通过数学建模协会举办数学建模活动,并在举办形式上有所改进,不断提高活动的档次,把每年一届的应用数学知识竞赛提高到学校层面上,争取有领导挂帅,使活动的影响力显著增加。

第五,继续加强数学建模教学环节,给学生灌输正确的学习观念与目标,把参加数学建模竞赛获奖作为参加数学建模学习的副产品,而通过学习和参与的过程,把培养应用数学的素质和解决问题的能力作为真正的目标,真正实现全国大学生数学建模竞赛的宗旨:培养学生“创新意识、团队精神、重在参与、公平竞争”。

毕业论文建模 第13篇

1高等数学教学中数学建模思想应用的优势

有助于调动学生学习的兴趣

在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。

有助于培养学生的创新能力

和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数学运用能力,培养了学生的创新意识,增强了学生的创新能力。

2高等数学教学中数学建模思想应用的原则

在进行数学建模的时候,一定要保证实例简明易懂,结合日常生活的实际情况,创设相应的教学情境,激发学生学习的兴趣。从易懂的实际问题出发,由浅到深的展开教学内容,通过建模思想的渗透,让学生进行认真的思考,进而掌握一些学习的方法与手段。在实际教学中,不要强求统一,针对不同的专业、院校,展开因材施教,加强与教学研究的结合,不断发现问题,并且予以改进,达到预期的教学效果。教师需要编写一些可以融入的教学单元,为相关课程教学提供有效的数学建模素材,促进教师与学生的学习与研究,培养个人的教学风格。除此之外,在实际教学中,可以将教学重点放在大一的第一学期,加强教师引导与教育,根据实际问题,重视微积分概念、思想、方法的学习,结合数学建模思想,让学生充分认识到高等数学的重要性,进而展开相关学习。

3高等数学教学中融入数学建模思想的有效方法

转变教学观念

在高等数学教学中应用数学建模思想,需要重视教学观念的转变,向学生传授数学模型思想,提高学生数学建模的意识。在有关概念、公式等理论教学中,教师不仅要对知识的来龙去脉进行讲解,还要让学生进行亲身体会,进而在体会中不断提高学习成绩。比如,37支球队进行淘汰赛,每轮比赛出场2支球队,胜利的一方进入下一轮,直到比赛结束。请问:在这一过程中,一共需要进行多少场比赛?一般的解题方法就是预留1支球队,其它球队进行淘汰赛,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在实际教学中,教师可以转变一下教学思路,通过逆向思维的形式解答,即,每场比赛淘汰1支球队,那么就需要淘汰36支球队,进而比赛场次为36。通过这样的方式,让学生在练习过程中,加深对数学建模思想的认识,提高高等数学教学的有效性。

高等数学概念教学中的应用

在高等数学概念教学中,相较于初高中数学概念,更加抽象,如导数、定积分等。在对这些概念展开学习的.时候,学生一般都比较重视这些概念的来源与应用,希望可以在实际问题中找出这些概念的原型。实际上,在高等数学微积分概念中,其形成本身就具有一定的数学建模思想。为此,在导入数学概念的时候,借助数学建模思想,完成教学内容是非常可行的。每引出—个新概念,都应有—个刺激学生学习欲的实例,说明该内容的应用性。在高等数学概念教学中,通过实际问题情境的创设与导入,可以让学生了解概念形成的过程,进而运用抽象知识解决概念形成过程,引出数学概念,构建数学模型,加强对实际问题的解决。比如,在学习定积分概念的时候,可以设计以下教学过程:首先,提出问题。怎样求匀变速直线运动路程?怎样计算不规则图形的面积?等等。其次,分析问题。如果速度是不变的,那么路程=速度×时间。问题是这里的速度不是一个常数,为此,上述公式不能用。最后,解决问题。将时间段分成很多的小区间,在时间段分割足够小的情况下,因为速度变化为连续的,可以将各小区间的速度看成是匀速的,也就是说,将小区间内速度当成是常数,用这一小区间的时间乘以速度,就可以计算器路程,将所有小区间的路程加在一起,就是总路程,要想得到精确值,就要将时间段进行无限的细化。使每个小区间都趋于零,这样所有小区间路程之和就是所求路程。针对问题二而言,也可以将其转变成一个和式的极限。这两个问题都可以转变成和式极限,抛开实际问题,可以将和式极限值称之为函数在区间上的定积分,进而得出定积分的概念。解决问题的过程就是构建数学模型的过程,通过教学活动,将数学知识和实际问题进行联系,提高学生学习的兴趣与积极性,实现预期的教学效果。

高等数学应用问题教学中的应用

对于教材中实际应用问题比较少的情况而言,可以在实际教学中挑选一些实际应用案例,构建数学模型予以示范。在应用问题教学中应用数学建模思想,可以将数学知识与实际问题进行结合,这样不仅可以提高数学知识的应用性,还可以提高学生的应用意识,并且在填补数学理论和应用的方面发挥了重要作用。对实际问题予以建模,可以从应用角度分析数学问题,强化数学知识的运用。比如,微元法作为高等数学中最为重要、最为基础的思想与方法,是高等数学普遍应用的重要手段,也是利用微积分解决实际问题,构建数学模型的重要保障。为此,在高等数学教学中,一定要将其贯穿教学活动的始终。在实际教学中,教师可以根据生命科学、经济学、物理学等实际案例,加深学生对有关知识历史的了解,提高学生对有关知识的理解,培养学生的数学建模意识。又比如,在讲解导数应用知识的时候,教师可以适当引入切线斜率、瞬时速度、边际成本等案例;在讲解极值问题的时候,可以适当引入征税、造价最低等案例。这样不仅可以激发学生学习的兴趣与积极性,还可以创设良好的教学氛围,对提高课堂教学效果有着十分重要的意义。

4高等数学教学中应用数学建模思想的注意事项

避免“题海战术”

数学是一个系统学科,需要从头开始教学,为此,教师一定要注意循序渐进。首先,在教学过程中,教师可以从教材出发,对概念、定理等进行讲解,让学生进行掌握与运用,转变教学模式,让学生牢记教材知识。其次,慎重选择例题练习,避免题海战术,培养学生的数学建模思想,逐渐提高学生的数学素质。

强调学生的独立思考

在以往高等数学教学中,均是采用“填鸭式”的教学模式,不管学生是否能够接受,一味的讲解教材知识,不重视学生数学建模思想的培养。目前,在教学过程中,教师一定要强调学生独立思考能力的培养,通过数学模型的构建,激发学生的求知欲与兴趣,明确学习目标,培养学生的数学思维,进而全面渗透数学建模思想,提高学生的数学素质。

注意恐惧心理的消除

在高等数学教学中,注意消除学生学习的恐惧心理及反感,提高课堂教学效果。在实际教学过程中,培养学生勇于面对错误的品质,让学生认识到错误并不可怕,可怕地是无法改正错误,为此,一定要提高学生的抗打击能力,帮助学生树立学习的自信心,进而展开有效的学习。学习是一个需要不断巩固和加强的过程,在此过程中,必须加强教师的监督作用,让学生可以积极改正自身错误,并且不会在同一个问题上犯错误,提高学生总结与反思的能力,在学习过程中形成数学思想,进而不断提高自身的数学成绩。

5结语

总而言之,高等数学课堂教学是培养学生数学品质的主要场所之一,通过高等数学教学和数学建模思想的结合,可以加深学生对高等数学知识的理解,进而可以提高学生对高等数学知识的运用能力。目前,在高等数学教学中,一定要重视数学建模思想的融入,改进教学模式,促使教学内容的全面展开,完成预期的教学任务,提高学生的数学水平。

抱歉,评论功能暂时关闭!