数学建模论文摘要万能模板(实用8篇)

个人学习 11 0

数学建模论文摘要万能模板 第1篇

摘要:高校数学教育是高等教育的基础学科,占据重要的一席之地。如何改变学生对数学枯燥乏味的学习状态,让学生轻松愉快地参与到数学学习中,是当前高校数学教学者面临的一个重要课题。在高校数学教学中开展数学建模竞赛,不仅能培养学生的创新思维,还能有效提高提高学生的创新能力、综合素质和对数学的应用能力。本文对高校开展数学建模竞赛与创新思维培养进行了分析阐述,并对此进行了一定的思考。

关键词:高校数学;建模竞赛;创新思维;培养

1数学建模竞赛

数学建模是一种融合数学逻辑思想的思考方法,通过运用抽象性的数学语言和数学逻辑思考方法,创造性的解决数学问题。当前很多高校中开始引入数学建模思想来加强学生创新能力的培养,可以使学生的逻辑思维能力和运用数学逻辑创新解决问题的能力得到提升。数学建模竞赛起源于1985年的美国,几年后国内几所高校数学建模教师组织学生开始参与美国的数学建模大赛,促进了数学建模思维的快速发展。直到1992中国首届数学建模大赛召开,而后一发不可收拾,至今仍以每年20%左右的速度增长,呈现一派繁荣景象。

2当前中国数学建模竞赛的特点

数学建模竞赛自主性较强。自主性首先体现在在数学建模过程中学生可以根据自己的建模需要通过一切可以利用的资源、工具来进行资料查阅和收集,建模比赛队员可以根据自己的意见和思维进行灵活自由解答,形式不拘一格。其次体现在数学建模竞赛的组织形式呈现多元化特点,组织制度上也较为灵活多样,数学建模主要侧重于分析思想,没有标准答案可以参考分享。建模队伍呈日益燎原之势。1992年首届中国数学建模大赛开展以来,其影响力与日俱增,高校和社会各界对数学建模颇为重视,参赛队伍、参赛学生的质量一直处于上升状态,数学模型也日渐合理科学,学生团队在国际数学建模大赛中屡创骄人战绩。组织培训日益加强。数学建模竞赛对学生数学知识的掌握及灵活运用、口套表达、语言逻辑思维、综合素质都有着非常高的要求,因此高校遴选参赛选手都投入了很大的精力,组织培训的时间很长,培训内容也很丰富,为数学建模竞赛取得好成绩奠定了坚实的基础。

3数学建模竞赛开展培养大学生创新能力的效果分析

学生的团队协作能力和意识得到增强。数学建模竞赛的团队组织形式活泼自由,通常采用学生组队模式开展,数学建模竞赛队伍形成一个团结战斗的整体,代表着不仅仅是学校的声誉,还一定程度上展示着国家的形象。经过长时间的培训,对数学模型的研究和分析,根据学生训练中的优势和特长,进行合理科学的小组分工,让学生快速高效地完成整个数学建模,在建模过程中学生统筹协作、密切配合,发挥各自的优势和长处,确保数学建模取得最大效用,学生的团队协作能力和意识得到锻炼,责任感和荣誉感进一步增强,通过建模竞赛彰显团队的合作能力和中国数学建模方面的发展。

高校学生参赛积极性高涨。近年来大学生数学建模竞赛的参与性高涨,参赛人数保持着20%左右的上涨幅度,参赛成绩也较为理想,创新能力得到了较好的锻炼和培养,综合素质得到提高,数学的应用能力提升。

高校学生数学逻辑思维能力和灵活运用知识的能力得到提升。数学建模竞赛充满着刺激性和挑战性,是学生各方面综合能力的一个展示。在数学建模竞赛中,学生不仅要需要扎实丰厚的数学知识储备,还需要具备清晰的数学逻辑思维和语言表达能力。同时要有机智的临场发挥能力和应变能力,不怯场、不惊慌,有充分的思想准备,能轻松应对其他参赛选手和评委的提问,能组织条理性、逻辑性的语言进行表述,将参赛小组数学模型的含义和设计清晰完整的传达给评委和其他参赛选手。在这个过程中,无疑会使学生的数学逻辑思维和语言表达能力及灵活运用数学知识的能力有一个较大的提升。

学生的自学能力和意志力得到锻。数学建模竞赛对参赛学生的综合知识和能力要求非常高,难度也非常大,需要与众不同的智慧和能力。可以说数学建模过程中,有许多高深的知识难于理解,有的日常学习过程中根本接触不到,需要数学建模参赛小组成员的互助合作,充分发挥各自优势和平时培训中的知识积淀,通过借助大量的工具书及参考资料,加上团队的.理解分析去摸索,探寻数学建模所需要的基础知识,无疑这对学生的自学能力培养是一个很好的锻炼。另外,搜寻资料、学习数学建模知识的过程是枯燥乏味的,需要长久的耐力和信心,无疑这对学生的坚毅不畏难的品质是一个很好的培养和磨炼。

创新思维与能力得到有效提升。经过艰苦复杂的数学建模训练,高校学生信息收集与处理复杂问题的能力得到培养锻炼,学生数量观念得到增强,能够养成敏锐观察事物数量变化的能力,数学的严谨推导也使学生养成认真细心、一丝不苟的习惯,逻辑思维能力得到提高,思路变得更加富有条理性,能灵活地处理各种复杂问题,有效解决数学疑难,数学理论能更好第应用于实践,数学素养进一步得到提升。

4结语

综上所述,高校学生数学建模竞赛的开展,能较高地提升学生的创新能力和综合素养,团队合作能力、竞争能力、表达交流能力、逻辑思维能力、意志品质能力等都能得到良好的塑造。高校要积极组织和开展数学建模竞赛,使学生的综合素质得到发展和锻炼。学校用重视和鼓励全体学生参与数学建模竞赛,通过竞赛实现学生各方面能力尤其是创新能力的培养。

参考文献:

[1]赵刚.高校数学建模竞赛与创新思维培养探究[J].才智,20xx(06).

[2]陈羽,徐小红,房少梅.数学建模实践及其对培养学生创新思维的影响分析[J].科技创业月刊,20xx(08).

[3]赵建英.数学建模竞赛对高校创新人才培养的促进作用分析[J].科技展望,20xx(08)5.

[4]毕波,杜辉.关于高校开展数学建模竞赛与创新思维培养的思考[J].中国校外教育,20xx(12).

数学建模论文摘要万能模板 第2篇

[论文关键词]建模地位 建模实践 建模意识

[论文摘要]建模能力的培养,不只是通过实际问题的解决才能得到提高,更主要的是要培养一种建模意识,解题模型的构造也是一条培养建模方法的很好的途径。

一、建模地位

数学是关于客观世界模式和秩序的科学,数、形、关系、可能性、最大值、最小值和数据处理等等,是人类对客观世界进行数学把握的最基本反映。数学方法越来越多地被用于环境科学、自然资源模拟、经济学和社会学,甚至还有心理学和认知科学,其中建模方法尤为突出。数学教育家汉斯·弗赖登塔尔认为:“数学来源于现实,存在于现实,并且应用于现实,数学过程应该是帮助学生把现实问题转化为数学问题的过程。”《新课程标准》中强调:“数学教学是数学活动,教师要紧密联系学生的生活环境,要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”

因此,不管从社会发展要求还是从新课标要求来看,培养学生的建构意识和建模方法成了高中数学教学中极其重要内容之一。在新课标理念指导下,同时结合自己多年的教学实践,我认为:培养建模能力,不能简单地说是培养将实际问题转化为数学问题的能力,课堂教学中更重要的是要培养学生的建模意识。以下我就从一堂习题课的片段加以说明我的观点及认识。

二、建模实践

片段、用模型构造法解计数问题(计数原理习题课)。

计数问题情景多样,一般无特定的模式和规律可循,对思维能力和分析能力要求较高,如能抓住问题的条件和结构,利用适当的模型将问题转化为常规问题进行求解,则能使之更方便地获得解决,从而也能培养学生建模意识。

例1:从集合{1,2,3,…,20}中任选取3个不同的数,使这3个数成等差数列,这样的等差数列可以有多少个?

解:设a,b,c∈N,且a,b,c成等差数列,则a+c=2b,即a+c是偶数,因此从1到20这20个数字中任选出3个数成等差数列,则第1个数与第3个数必同为偶数或同为奇数,而1到20这20个数字中有10个偶数,10个奇数。当第1和第3个数选定后,中间数被唯一确定,因此,选法只有两类:

(1)第1和第3个数都是偶数,有几种选法;(2)第1和第3个数都是奇数,有几种选法;于是,选出3个数成等差数列的个数为:2=180个。

解后反思:此题直接求解困难较大,通过模型之间转换,将原来求等差数列个数的问题,转化为从10个偶数和10个奇数每次取出两个数且同为偶数或同为奇数的排列数的模型,使问题迎刃而解。

例2:在一块并排10垄的田地中,选择2垄分别种植A,B两种不同的作物,每种作物种植一垄,为了有利于作物生长,要求A,B两种作物的间隔不小于6垄,则不同的选垄方法共有几种(用数字作答)。

解法1:以A,B两种作物间隔的垄数分类,一共可以分成3类:

(1)若A,B之间隔6垄,选垄办法有3种;(2)若A,B之间隔7垄,选垄办法有2种;(3)若A,B之间隔8垄,选垄办法有种;故共有不同的选垄方法3+2+=12种。

解法2:只需在A,B两种作物之间插入“捆绑”成一个整体的6垄田地,就可以满足题意。因此,原问题可以转化为:在一块并排4垄的田地中,选择2垄分别种植A,B两种作物有 种,故共有不同的选垄方法=12种。

解后反思:解法1根据A,B两种作物间隔的垄数进行分类,简单明了,但注意要不重不漏。解法2把6垄田地“捆绑”起来,将原有模型进行重组,使有限制条件的问题变为无限制条件的问题,极大地方便了解题。

三、建模认识

从以上片段可以看到,其实数学建模并不神秘,只要我们老师有建模意识,几乎每章节中都有很好模型素材。

现代心理学的研究表明,对许多学生来说,从抽象到具体的转化并不比具体到抽象遇到的困难少,学生解数学应用题的最常见的困难是不会将问题提炼成数学问题,即不会建模。在新课标要求下我们怎样才能有效培养学生建模意识呢?我认为我们不仅要认识到新课标下建模的地位和要有建模意识,还应该要认识什么是数学建模及它有哪些基本步骤、类型。以下是对数学建模的一些粗浅认识。

所谓数学建模就是通过建立某个数学模型来解决实际问题的方法。数学模型可以是某个图形,也可以是某个数学公式或方程式、不等式、函数关系式等等。从这个意义上说,以上一堂课就是很好地建模实例。

一般的数学建模问题可能较复杂,但其解题思路是大致相同的,归纳起来,数学建模的一般解题步骤有:

1.问题分析:对所给的实际问题,分析问题中涉及到的对象及其内在关系、结构或性态,郑重分析需要解决的问题是什么,从而明确建模目的。

2.模型假设:对问题中涉及的对象及其结构、性态或关系作必要的简化假设,简化假设的目的是为了用尽可能简单的数学形式建立模型,简化假设必须基本符合实际。

3.模型建立:根据问题分析及模型假设,用一个适当的数学形式来反映实际问题中对象的`性态、结构或内在联系。

4.模型求解:对建立的数学模型用数学方法求出其解。

5.把模型的数学解翻译成实际解,根据问题的实际情况或各种实际数据对模型及模型解的合理性、适用性、可靠性进行检验。

从建模方法的角度可以给出高中数学建模的几种重要类型:

1.函数方法建模。当实际问题归纳为要确定某两个量(或若干个量)之间的数量关系时,可通过适当假设,建立这两个量之间的某个函数关系。

2.数列方法建模。现实世界的经济活动中,诸如增长率、降低率、复利、分期付款等与年份有关的实际问题以及资源利用、环境保护等社会生活的热点问题常常就归结为数列问题。即数列模型。

3.枚举方法建模。许多实际问题常常涉及到多种可能性,要求最优解,我们可以把这些可能性一一罗列出来,按照某些标准选择较优者,称之为枚举方法建模,也称穷举方法建模(如我们熟悉的线性规划问题)。

4.图形方法建模。很多实际问题,如果我们能够设法把它“翻译”成某个图形,那么利用图形“语言”常常能直观地得到问题的求解方法,我们称之为图形方法建模,在数学竞赛的图论中经常用到。

从数学建模的定义、类型、步骤、概念可知,其实数学建模并不神秘,有时多题一解也是一种数学建模,只有我们认识到它的重要性,心中有数学建模意识,才能有效地引领学生建立数学建模意识,从而掌握建模方法。

数学建模论文摘要万能模板 第3篇

1明确概念,了解内涵

我们所说的数学模型指的是用精准的数学语言去模拟和描述实际生活中的空间形式、数量关系等,其主要特点就是运用数学语言将客观现象或者事物的特点、主要关系表述出来,使之成为一种具体的数学结构。例如,小学数学问题中“5棵白菜与2棵白菜堆起来是多少棵”、“5只羊与2只羊加在一起是多少只”这样问“一共有多少”的问题有很多,如果每次都一遍遍数太麻烦,于是运用加法数学模型可以解决很多的类似问题。同时,当许多相同的数加在一起时,则可以运用乘法数学模型。又如,“小芳家的储藏室长16分米、宽12分米,如果使用边长为整分米数的正方形瓷砖来铺设储藏室地面(使用瓷砖都是整块的),边长为多少分米的瓷砖合适?其最大边长是几分米?”当小学生面对这样的问题时,也可以运用数学模型来解决。在小学数学建模教学过程中,不少人认为建模是学者、专家的事情,作为小学生来说只能运用模型或者找一个生活原型来加深对数学模型的认识和理解,而无法做到创建数学模型。然而笔者不这么认为,其原因主要有:第一,小学生也有创建数学模型的可能与机会;第二,一旦学生面临实际问题时,可能会出现没有现成的模型来套用的情况,因此学生自己必须通过探索研究,找到适合的数学模型,从而解决问题。此外,在小学数学建模的教学过程中,还需要依据不同阶段的学生特点,对其提出不同的要求,具体来说主要分为以下几个阶段:第一,学生以具体形象的思维主,此时较难掌握建模的方法,因此教师必须逐步培养其建模思维,逐步让学生运用数学知识来解决生活中的实际问题;第二,学生从具体形象思维向抽象逻辑思维过渡,此时教师应让学生充分感受到数学建模的过程,并逐步掌握建模要领,提升其运用建模知识解决实际问题的能力。

2体现过程,循序渐进

第一,准备模型,丰富问题情境,激活已有经验。众所周知,模型的建立离不开具体的现实情境,因此只有对问题的情境有了充分的认识,才能有效建模。因此,作为教师必须要善于开发学生丰富问题背景的能力,充分利用身边的生活素材来创建与实际生活相符的生活情境,从而为创建模型提供丰富的体验。比如在《确定起跑线》一课的教学过程中,某教室先播放了400米赛跑的片段,一一展示了跑道的整体状况、运动员起跑瞬间、比赛过程及最后的冲刺等情况。看完之后,学生会产生许多疑问:为什么运动员不在同一起跑线上?为什么跑弯道时,内道运动员能够超过外道运动员?然后学生就会提取相关的信息,比如:跑道是有弯道和直道两部分组成,有着相同的终点,外道比内道长,因此起跑线也就不同。此时教师需要做的就是用课件对学生的这些问题及答案一一予以证实。这种运用生活中熟悉的事物充分引入课堂教学内容中,以情境的方式展示给学生的方式,对激活学生现有的生活经验有着较大的帮助,学生有了丰富的背景作依赖,就能更好的解决本课的数学模型问题,即“相邻起跑线的距离差=直径差×π”。

第二,假设模型,把握本质特征,提出合理假设。在小学数学建模的教学过程中,可依据建模的目的及建模对象的特征来观察、分析、抽象、概括实际的数学问题,并用准确的`数学语言来提出合理的假设,这一点很关键。此外,这一过程中还要求学生能够善于分别问题的主次方面,为建模提供正确的方向。

第三,建构模型,合理选择策略,亲历建模过程。在数学建模过程中,策略选择十分利则会对建模过程产生直接的影响。要知道,合适的策略能够帮助学生精准抓住问题的实质,因此作为教师而言,应立足与学生的认知特征和认知起点,充分让学生亲历运用合适策略进行建模的整个过程。

第四,应用模型,回归实际问题,拓展模型应用。大家都知道,建模的目的就是为了更好地对社会现象及自然现象进行描述,为此,建立数学模型的终极目的还是要回归实际问题,从而更好的认识自然,改造自然。此外,在数学建模过程中还应将模型有效的还原成具体或者直观的数学现实,并教会学生利用建模过程中所运用的策略和方法来解决其他问题,只有这样数学建模教学才能走得更远。

3针对学情,把准目标

第一,正确处理数学知识与小学生认知水平的关系。小学阶段,学生的逻辑思维与感性经验有着较为密切的联系,有着明显的形象性。因此,需要密切联系生活实际进行数学建模教学,同时还要符合小学生的心理发展规律及认知特征,并逐步向小学生渗透建模的思想,培养其建模能力。

第二,正确定位建模的教学定位。对此,我们必须认识到,学生在学习数学建模方法的过程是一个不断深化、不断积累的过程。作为教师,应在教学实践中充分结合数学知识,反复对建模方法加以渗透,并帮助学生正确理解题意、解决问题,让学生充分感受建模过程的重要意义。

第三,正确处理建模教学的两面性。具体来说,主要表现为以下两点:一是形象、直观、简洁的一面,其对学生理解、掌握及运用相关的数学知识解决问题有着积极的作用;二是固定、模式化的一面又极大的限制了学生的思维。因此,在数学建模教学过程中,作为教师应时刻注意把握好形象、直观、简洁的一面,尽可能避免解决问题的模式化、固定化。

数学建模论文摘要万能模板 第4篇

在建模论文中的目的主要叙述建模所涉及的主题范围。建议一道两句话合适。

接下来是建模时所用到的方法。包括所用的模型理论、模型的假设条件、文章的材料、解决问题的手段、写程序所用到的软件工具等。

一般的结果包括:在建模时观察到的结论、模拟实验的结果,数据可视化中得到的效果,算法的性能等。

最终的讨论包括:模型结果的分析、比较、评价、应用,以及存在的问题,在以后模型的推广的的启发,建议和预测等。

不属于以上四种但具有重要的信息价值。这样的展示也会使得你的论文得到加分。

BMRC为:背景(Background)、方法( Methods )、结果( Results )、结论(Conclusions)等四个方面;

BMFI采用:背景(Background)、方法( Methods )、发现( Findings )和解释(Interpretation)等四个方面。 当然无论那种结构,都要忠于文章的结构和方法来写。不要夸大。保证逻辑正确即可。

数学建模论文摘要万能模板 第5篇

随着社会的不断发展和科学技术的进步,数学在现实生活中的应用越来越广泛,尤其是计算机技术的发展及广泛应用,使数学建模思想在解决社会各个领域中的实际问题的应用越来越深入。本文笔者简要谈谈数学建模思想融入大学数学类课程的意义和方法。

1什么是数学建模思想

所谓数学建模就是指构造数学模型的过程,也就是说用公式、符号和图表等数学语言来刻画和描述一个实际问题,再经过计算、迭代等数学处理得到定量的结果,从而供人们分析、预报、决策与控制。那么数学模型就是利用数学术语对一部分现实世界的描述。数学建模思想是指理论联系实际,将实际的事物抽象成数学模型,然后利用所学的理论来解决问题的一种思想。

在新形势下,传统的数学教学方法已经无法适应现在大学数学教育改革的需求,数学建模思想与大学数学类课程教育融合成为目前高等院校数学教学改革的突破口。

2数学建模思想融入大学数学类课程的意义

(1)数学知识在各个领域的应用越来越广泛。如今数学知识在各个领域的应用越来越广泛,尤其是在经济学中的应用最为显著。自从1969年创设诺贝尔经济学奖以来,就有不少理论成果来自利用数学工具分析经济问题。事实上,从1969年到20xx年这35年中,一共产生了53位获奖者,其中拥有数学学位的共有19人,所占比例为;其中拥有理工学位的有9人,所占比例为17%;二者共计占;其_有29位诺贝尔经济学奖的获得者是以数学方法为主要的研究方法,约占总人数的。然而几乎所有的诺贝尔经济学奖获得者都运用了数学方法来研究经济学理论。除了在经济领域,数学建模思想也广泛应用于生物医学,包括超声波、电磁诊断等方面。同时数学建模还将数学与生物学融合进了基因科学,例如基因表达的定型、基因组测序、基因分类等等,在生物学领域需要建立大规模的模拟以及复杂的数学模型。可见数学建模思想的应用是非常广泛的,并对其他领域的发展起着重要的推动作用。

(2)有利于激发学生的学习热情,丰富大学数学课程。一般的数学课,通常只是重视理论知识的讲解和传授,对知识点的推理和思想方法的分析较少。而且多数学生为了应付考试,也只是以“类型题”的方式去复习知识点。这样的方式虽然能够让学生掌握一部分数学知识,可是却不能提高学生的数学素质,不能提高学生对大学数学的学习兴趣。而数学建模思想运用数学知识来解决生活中的实际问题,这样就使数学活了起来,而不是死的理论知识。运用数学建模思想能够让学生在数学中感悟生活,在生活中体会数学的价值,更容易吸引学生的学习兴趣。而兴趣是学习最有效的动力,让学生主动参与学习而非被动学习,取得的教学效果会更好。

(3)是加强数学教学改革,适应时代发展的需要。在大学数学教学活动中,许多学生常常陷入这样的困惑之中:花费了大量的精力,做了很多习题,但是却感受不到数学的作用和价值。而教师在教学中也总是告诉学生数学是一门很有用的课程,但是却举不出现实的例子。并且传统的教学方式也只是教会学生掌握简单的理论知识,并不能提高学生的数学素养和数学意识。而将数学建模思想融入到大学的数学类课程之中就能很好地解决这些问题。因为将数学建模思想运用到数学类课程中,就能够让学生在独立思考和探索中感受到数学在现实生活中的实用价值,提高学生运用数学的眼光去观察、分析以及表示各种事物的空间关系、数量关系和数学信息的能力,提高学生的创造能力和创新意识。

3高校在应用数学建模思想中出现的问题

(1)教师在教学过程中较少渗入数学建模思想。目前在高校数学教学中数学建模的思想应用得仍然较少,重视程度不够。不少高校的教师在开展大学数学类课程时,仍然只是停留在数学知识的教学方面,并没有对学生进行研究性学习探索。据调查,大多数高校教师对日常的教学工作能够认真完成规定的教学任务,但能够真正创造性地把数学建模思想融入到数学教学任务中的教师较少。大多数高校数学老师都意识到探索式的数学建模教学很重要,但真正将数学建模思想与数学教学融合的尝试和探索却很少。可见多数高校教师虽然明白数学建模思想的重要性,但是由于缺乏足够的数学建模教学的相关知识及经验,在实际教学中数学建模思想仍未得到充分的运用。

(2)开设的有关数学建模的课程和活动较少。虽然数学建模思想得到了越来越广泛的应用,但是在高校中实际开设的有关数学建模的课程并不多,尤其是应用数学、数学实验以及计算机应用等一些需要渗入数学建模思想的课程在实际的教学过程中并没有创造性地运用数学建模思想。另一方面,校内自主开展的有关数学建模竞赛和活动并不多,宣传力度也不够,无法让更多的学生了解数学建模的意义和价值,更无法参与到数学建模活动中去。

(3)学生对数学的态度和观念还未改变,对数学建模缺乏深入的了解。大学数学是一门较为抽象的学科,其概念、定理和性质都不容易掌握,由于其具有一定的难度,所以不少学生对大学数学类课程以及数学建模没有兴趣。并且这些学生在初中和高中阶段也学习数学,但是不少学生是为了应付考试,并没有见识到数学的应用性,觉得数学是一门纯理论的课程,没有实用价值。同时很多学生对数学建模思想的运用并不够了解,不知道如何将数学知识和数学方法应用到实际的生活中去,觉得数学没有用,也没有深入学习的意义。

4如何加强数学建模思想和大学数学类课程的融合

(1)提高课堂教学质量,创造性地运用数学建模思想。大学的数学类课程主要有“线性代数”、“高等数学”、“运筹学”、“数学建模”、“概率论与数理统计”等,这些课程的核心部分都跟高等数学有关,所以要注重提高数学类课程的教学质量关键就在于高等数学,而要提高高等数学的教学质量就必须在教学过程中创造性地应用数学建模思想。对于主修数学的学生,要加强对计算机软件和语言的学习,系统性地对数学原理进行剖解和分析,合理运用数学知识和数学方法解决社会实际问题。在教学中多引导、启发学生利用对生活问题和科学问题的深入研究,主动结合自己的课程理论知识和数学建模,使数学建模思想融入到学生的整个学习过程中去。对于非数学领域的问题,要启发学生运用计算机软件建模,从而解决不同领域中的数学建模问题。

(2)多开设跟数学建模有关的数学类课程。例如除了开设跟数学建模有关的必修课,还可以开设一些跟数学建模有关的选修课,为其他专业的学生提供接触和了解数学建模思想的机会,为学生拓展知识领域,为其解决该领域的问题提供有效的方法。例如,经济学有关专业的学生就可以通过选修跟数学建模有关的课程,解决其在经济学中遇到的问题,因为很多跟经济学有关的问题仅仅靠经济学的知识是无法解决的,像贷款计算这样的问题就要将数学与经济学联系起来才能解决实际问题。

(3)广泛宣传,让学生了解数学建模的意义和价值。学生是教学过程中的主体,目前,大学数学建模课程开设效果不佳,学生参与度低的主要原因就是学生缺乏对数学建模的深入了解。那么,要提高学生的.参与性,促进数学建模思想与大学数学类课程的融合就必须加强宣传,让学生深入了解什么是数学建模。同时,在课堂上就是也要转变传统枯燥的教学方式,多使用启发式教学和探索式教学,吸引学生的学习兴趣,让他们发现数学对社会实际生活的重要作用,转变他们对数学的态度,并引导学生对数学建模和数学课程感兴趣。

(4)转变数学教育理念及教育方式。要转变传统的教育方式,将教学的重点放在数学知识在生活中的应用问题上,而不是将知识与实际生活割裂开来。同时在教学中要注重证明和推理,加强学生对数学方法的掌握注重培养学生对实际问题的逻辑分析、简化、抽象并运用数学语言表达的能力。也就是说教学的重点在于提高学生的数学学习能力和加强数学意识和数学方法的应用,这样才能够培养出具有创新能力和创新意识的人才。

(5)多开展数学建模活动和竞赛,提高学生参与性。在高校内部要多开展跟数学有关的活动和竞赛以及专家讲座等,一方面加强学生对数学建模的认识,另一方面也提高了学生的参与性。通过专家讲座,不仅可以让学生更深入地了解数学建模的价值,也加强了学术交流,提高学生的数学建模应用能力。通过数学建模竞赛,为学生提供展示自己智慧、充分发挥其能力的平台。同时,竞赛也可以让学生在竞赛中发现自己的不足,在交流中不断完善自己的缺陷,拓展学生的思维。而且,在数学建模比赛中,通过让学生探究跟生活实际有关的例子,提高学生对数学建模的兴趣,加强学生对模型应用的直观性认识,促进学校应用型人才的培养。

5结束语

总之,数学建模思想和高校数学类课程的融合,对于高等数学教学改革具有非常重要的意义。把数学建模思想融入到高等数学教学中,可以更好地提高学生的数学学习能力,提高他们运用数学思想和数学方法分析问题、解决问题和抽象思维的能力。高校教师要加强数学建模思想的应用,让学生初步掌握从实际问题中总结数学内涵的方法,提高学生的数学学习兴趣,为高校学生专业课的学习奠定坚实的数学基础。

数学建模论文摘要万能模板 第6篇

【摘要】提出数学建模的基本概念,通过考查独立院校大学生数学建模竞赛发展状况,针对独立学院人才培养目标以及学生的特点,从多个方面阐述独立院校大学生数学建模教育存在的突出问题,在此基础上,提出了独立大学数学建模教学改革策略和方法。

【关键词】独立院校;数学建模;改革

一、数学建模的基本概念

数学是在实际应用的需求中产生的,要描述一个实际现象可以有很多种方式,为了实际问题描述的更具逻辑性、科学性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。数学建模则是架于数学理论和实际问题之间的桥梁,数学模型是对于现实生活中的特定对象,根据其内在的规律,做出一些必要的假设,为了一个特定目的,运用数学工具,得到的一个数学结构,用来解释现实现象,预测未来状况。因此,数学建模就是用数学语言描述实际现象的过程。

二、独立院校数学建模课程现状

大部分的独立院校的数学建模工作纯在一定的问题,主要体现在以下几个方面:(一)学生方面的问题。独立院校的大部分学生的数学功底差,对数学的学习兴趣不大,普遍认为数学的学习对自身的专业的帮助不大。从而更不愿意接触与数学有关的数学建模,对数学建模竞赛的兴趣不大。在独立院校中,参加数学建模竞赛的大都是低年级的学生,而这些学生的数学知识结构还不完整,他们往往参加了一届数学竞赛并未获得奖项后就不愿意再次参加。而高年级的同学忙于其他的就业、考研等压力,无暇参加数学建模竞赛的培训。(二)教资方面的问题。首先。传统的教学是知识为中心、以教师的讲解为中心。数学建模的教学要求教师以学生为中心,培养学生学会学习的能力,发展学生的创新能力和创造能力。独立院校外聘的老师常常对独立院校的学生不够了解,这直接影响到教学成果。其次,数学建模涉及的知识面广,不但包括数学的各个分支,还包含了其他背景的专业知识。独立院校的教师一部分是才从大学毕业不久的研究生,他们对于数学建模教学和竞赛的培训经验不足,科研能力不是很强,对数学的各个分支的把控能力不强,对其他专业的了解不够全面。(三)教学实施方面的问题。大学生数学建模竞赛的目的决不仅仅是获奖,更重要的是通过参加大学生数学建模竞赛活动,促进高校数学教学改革,起到培养全体学生能力、提高全体学生素质的作用。独立院校数学建模教学存在很多的问题。首先,大学数学建模教育在独立院校中的普及性不够。数学建模的宣传力度不大,课程大多开在大一和大二的跨选课,这个时候学生的数学知识结构还不完整。其次就是教材的选取,数学建模的相关教材大都是为了数学建模竞赛而编写的,对于独立院校的学生来说,这些教材的难度系数大,涉及的知识面广,远远超过了学生的接受能力。

三、改革的具体措施

(一)让学生了解数学建模,培养学习数学建模的兴趣。数学建模课程的开设有利于培养学生运用数学具体解决实际问题的能力,让学生发现学习数学的用处,改变学生学习数学的态度,提高学习数学的能力,认识到数学的意义和价值。独立院校学生的数学基础虽然比较差,但是学生的动手能力强。学校可以在多开展数学建模的讲座和课程,让学生了解数学建模。同时多向学生宣传数学建模的成果。(二)在教学内容中渗透数学建模思想和方法。1.在日常数学教学中渗透数学建模的思想方法。传统的数学教学重视的是知识的培养和传输,而忽视的是实际应用能力。教师的教学目标是使学生掌握数学理论知识。一般的教学方法是:教师引入相关的的基本概念,证明定理,推导公式,列举例题,学生记住公式,套用公式,掌握解题方法与技巧。学生往往学习了不少的纯粹的数学理论知识,却不知道如何应用到实际问题中。数学建模课程与传统数学课程相比差别较大,学校开设的数学建模跨选课及数学建模培训班,对培养学生观察能力、分析能力、想象力、逻辑能力、解决实际问题的能力起到了很好的作用。由于学校开设的数学建模课程大多是选修课程,课时较少,参选的学生也有限,数学建模的作用不能很好的向学生传输。高等数学中的很多内容都与数学建模的思想有关,因此,在大学数学课程的教学过程中,教师应有意识地结合传统的数学课程的特点,将数学建模的思想和内容融入到数学课堂教学中。这样既可以激发学生的学习兴趣,又能很好的将突出数学建模的思想。2.数学建模与专业紧密联系,发挥数学对专业知识的服务作用。数学建模与专业知识的结合,不仅可以让学生认识到数学的重要作用,在专业知识学习中的地位,还可以培养学习数学知识的兴趣,增强数学学习的凝聚力,同时加深对专业知识的理解。通过专业知识作为背景,学生更愿意尝试问题的研究。在学习中遇到的专业问题也可以尝试用数学建模的思想进行解决。这有利于提高学生的综合能力的培养。3.分层次进行数学建模教育。大体说来独立院校的数学建模课程的开设应该分成两个阶段:(1)第一阶段:大学一年级,在这个阶段,大部分学生对数学建模没有了解,这时候适合开设一些数学建模的讲座和活动,让学生了解数学建模。同时,在日常的数学教学中选择简单的应用问题和改变后的数学建模题目,结合自身的专业知识进行讲解,让学生了解数学建模的一般含义。基本方法和步骤,让学生具备初步的建模能力。(2)中级层次:大学二、三年级。在这个阶段,学生基本具备了完整的数学结构,具有了基本的建模能力。这个时候应该开设数学建模专业课程,让学生处理比较复杂的数学建模问题,让学生自己去采集有用的信息,学会提出模型的假设,对数据和信息需进行整理、分析和判断,并模型进行分析和评价,最终完成科技论文。

四、加强教学组织与学校管理

(一)提高数学教师自身水平。在数学建模教学过程中,教师扮演着重要的角色。教师水平的高低决定着数学建模教学能否达到预期的目的。数学建模的教学,不仅要求教师具备较高的'专业水平,还要求教师具备解决实际问题的能力和丰富的数学建模实践经验。而独立院校的教师部分教师是才毕业不久的研究生,缺乏实践经验。这就对独立院校的的数学建模教学工作产生了很大的障碍。为了提高教师的水平,可以多派青年教师进行专业培训学习和学术交流,参加各种学术会议、到名校去做访问学者等等。同时可以多请著名的数学专家教授来到校园做建模学术报告,使师生拓宽视野,增长知识,了解建模的新趋势、新动态。青年教师还需要依据特定的教学内容、教学对象和教学环境对自己的教学工作作出计划、实施和调整以及反思和总结。青年数学教师还必须更新教育理念,改变传统的教学理念。只有不断创新,努力提高自身素质,才能适应新的形势,符合建模发展的要求。(二)选取合适的教材。数学建模教材使用也存在诸多不足之处。绝大部分高校教学建模课程采用的是理工类专业数学建模教材。这些教材主要涵盖的数学模型的难度系数大。而独立院校的学生的基础薄弱,无法接收这些模型。在教学过程中,教师可以将具体的案例或是历年的数学建模题目做为教学内容。通过具体的建模实例,讲解建模的思想和方法。一边讲解,一边让学生分组讨论,提出对问题的新的理解和对魔性的认识,尝试提出新的模型。(三)丰富建模活动。全面开展数学建模活动是数学建模思想的最重要的形式,它既使课内和课外知识相互结合,又可以普及建模知识与提高建模能力结合,可以培养学生利用数学知识分析和解决实际问题的能力,可以有效地提升了学生的数学综合素质。学校可以定期的开展数学建模宣传活动,扩大数学建模的知名度。学校还可以邀请有经验的专家和获奖学生开展建模讲座,提高对数学建模的重视,积极的组织建模活动。实践证明,只有根据独立院校的自身特点和培养目标,对数学建模课程的教学不断进行改革,才能解决独立院校数学建模课程教学的问题,才能真正的让学生喜欢上数学,喜欢上数学建模。

【参考文献】

[1]李大潜.将数学建模思想融入数学主干课程[J].中国大学教育.20xx.

[2]贾晓峰等.大学生数学建模竞赛与高等学校数学改革[J].工科数学.20xx:162.

[3]融入数学建模思想的高等数学教学研究[J].科技创新导报.20xx:162.

数学建模论文摘要万能模板 第7篇

摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究

一、引言

建模思想使高等数学教育的基础与本质。从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状

高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性

第一,能够激发学生学习高数的'兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。 这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。

第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要懂得专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。

第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。

四、将建模思想融入高等数学的实践方法

第一,转变教学理念。改变传统教学思想与教育方式,提高学生建模的积极性,增强学生对建模方式的认同。教师不能只是单一的讲解理论知识,还需要引导学生亲自体验,从互动的教学过程中,理解建模思想的重要性。

第二,在生活问题中应用建模思想。其实,很多日常生活中的很多例子,都是可以解决课堂上的问题的。数学是来源于生活的。作为教师,应该主动引领学生参与实践活动,将课本的知识尽量与日常问题联系到一起,发动学生主动用建模思想解决问题,提高创新能力,从不同的角度,以不同的方式提高解决问题的能力。例如,学校要组织元旦晚会,需要学生去采购必需品。超市有多种打折的方式,这时候教师就可以引导学生使用建模思想,要求去学生以模型来分析各种打折方式的优缺点,并选择最优惠的方式买到最优质的晚会用品。这样学生才会发现建模的乐趣,并了解如何在生活案例中应用建模思想。

第三,不断巩固和提高建模应用。数学建模思想融入生活实践不是一蹴而就的,而是一个不断实践、循序渐进的过程。人们也不能为了应用建模思想而将日常生活生拉硬套。教师也应该尽可能多地搜集生活中的案例,将建模思想与生活实践更灵活地联系在一起。不断地由浅入深,将建模思想牢牢地印在学生的脑海中。并根据每个学生的独特性,不断开发学生的创新潜力和发散思维能力,提高逻辑思维能力和空间想象力,在实践中巩固深化建模思想。五、结束语综上所述,将建模思想融入高等数学教学中,能显著提高课堂教学质量和学生解决问题的能力,因此教师应从整体上把握高数的教学体系,让学生逐步建立建模思维,不断深化和巩固用建模思想解决问题的能力。只有这样,融入数学建模思想的高等数学的教学效果才会起到应有的作用。

数学建模论文摘要万能模板 第8篇

1. 问题重述:(略)

2. 问题背景:

交待问题背景,说明处理此问题的意义和必要性。

优点:叙述详尽,条理清楚,论证充分

缺点:前两段过于冗长,可作适当删节

3. 问题分析:

进一步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径

优点:条理比较清晰,论述符合逻辑,表达清楚

缺点:似乎不够详细,尤其是第三段有些过于概括。

4. 模型的假设与约定:

共有8条比较合理的假设

优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。

缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失一般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。

5. 符号说明及名词定义

优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。

缺点:有些地方没有标注量纲,比如A和B的量纲不明确。

6. 模型建立与求解

问题一:

对所给数据惊醒处理和统计,得出规律,找到联系。

优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。

问题二:

最短路的确定

为确定最短路径又提出了一系列假设并阐述了理由,在这些假设下规定了最短路径

优点:假设有根据,理由合情合理

缺点:第4条中假设观众消费是单向的,虽然简化了问题但有失一般性,事实上观众往返经过商业区消费的概率是相差比较大的,我认为应改为假设观众在往返过程中消费且仅消费一次。

计算人流量的追踪模型

给出计算人流量的方法,并计算了各区人流量,并对计算结果进行了分析。

优点:分情况讨论,并且取了两个典型的具有代表性的例子进行了具体阐述,没有全部罗列所有数据的计算过程,使文章清晰简明,不至于繁冗拖沓,这在以后我们写论文是极其值得借鉴。对结果的分析有针对性,合情合理而且用条形图直观地反映了人流量的数值和各地区间的差异。

缺点:分析还不够详细,考虑因素还不够周到。

问题三

进一步对问题作以简化,将问题的解决最终归结为一个焦点,并对解决这个问题所需确定的因素进行了讨论,最后得出结论。

商区消费额的确定

阐述了为什么要计算这个量,计算这个量对解决问题有什么至关重要的作用并且采用了Huff模型并且结合本问题的具体情况来求解数据。

优点:论证充分合理且模型和经济学知识应用恰当,所得数据有效可信,考虑周到而不繁杂,抓住了事物的主要矛盾,而且对Huff模型的解释较为充分。

缺点:对于各商业区的总消费额我们更看重数量而文中用条形图的方式却着重体现了各地区之间的数量差异,有喧宾夺主之嫌,改称图表形式可以更好地反映数据量的值

各个商区MS数量的概略确定

确定了确定MS个数的方案,在不失一般性的.前提下对问题进行进一步简化,缩小解决问题的范围并对问题进行了求解

优点:简洁明了,论述合理。

引入了一个重要的确定数量的参数,且对解决问题方法的合理性及此数据对问题的解的影响及行了数值分析和理论论证,提出了改进方案,得出结果,并对结果进行分析。

优点:条理清晰,逻辑严谨,论证充分,详尽而不冗长,使本篇论文的精华部分。分析合理且充分考虑到了实际情况使结果更具可信性。

和MS的分配情况讨论

对二者关系提出了几条假设。

优点:论述充分,假设合理而且用图表反映结果,简单明了,情况考虑全面周到。

问题四

分析了方法的科学性和结果的贴近实际性

优点:条理清晰,分析有依据,措辞严谨,逻辑严密而且对前面所述方法进行了分别阐述。这使得对方法科学性的论述更加充分可信。对贴近事实性的论述,理论和事实相结合,叙述数据来源,并采用举例论证法论证结果的贴近实际性。

缺点:结果的贴近实际性的论证中,应详细罗列一下数据的来源,也许更加可信。

7. 模型的进一步讨论

为简化抽象现实一边建构模型而忽略掉的一些因素进行了考虑,对于一些可能影响讨论结果的因素给出了算法和解决方案

优点:考虑全面,善于抓住主要矛盾,表述简明客观。

8. 模型检验

与某些近似且已妥善解决的问题进行了比较,用事实说明处理方案的正确性。

优点:采用了较好的参照对象,采用图像对比的方法,使问题清晰明了。

缺点:应该简述一下雅典奥运会采用的方案是成功的,否则比照就失去了意义,还有由于举办地点不同,地区上的差异使这种单纯与雅典奥运会进行得比较稍显单薄。

9. 模型优缺点

总结模型建立并解决问题的过程中的优点和缺点

优点:简明扼要,客观实在

10. 附录(略)

参考文献

抱歉,评论功能暂时关闭!